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Abstract: The P300 signal is an evoked potential that occurs in the occipital region of the 

brain when an unexpected visual or auditory change to a light or sound pattern is presented. 

This pulse is commonly studied in the field of biomedicine, used in partial recovery of 

mobility in quadriplegic patients through a screen with different commands, in which the 

patient moves his eyes towards the desired command, and generating the P300 is 

performed. the desired command. It is from here that the Machine Learning models are 

used, being Logistic Regression, Decision Tree, Support Vector Machine and K Nearest 

Neighbors, to recognize characteristics of electroencephalographic signals with the 

presence and absence of P300 and an increase in data is applied to them by improving the 

training, in order to obtain the analysis of the best predictors of the P300 brain signal. 
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Resumen: La señal P300 es un potencial evocado que se produce en la región occipital del 

cerebro cuando se presenta un cambio visual o auditivo inesperado a un patrón lumínico o 

sonoro. Este pulso es comúnmente estudiado en el campo de la biomedicina, usado en 

recuperación parcial de movilidad de pacientes cuadripléjicos por medio de una pantalla 

con diferentes comandos, en el que el paciente mueve los ojos hacia el comando que desea, 

y generando la P300 se realiza el comando deseado. Es a partir de aquí, que se le da uso a 

modelos de aprendizaje de Machine Learning, siendo Regresión Logística, Árbol de 

Decisión, Máquina de Soporte Vectorial y K Vecinos Más Cercanos, para reconocer 

características de señales electroencefalográficas con presencia y ausencia de P300 y se les 

aplica un aumento de datos mejorando los entrenamientos, para así obtener el análisis de 

los mejores predicadores de la señal cerebral P300. 
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1. INTRODUCTION 

 

The P300 electroencephalographic signal is an 

evoked potential that occurs in the brain [1], more 

specifically in the occipital region [2], which 

corresponds to the back of the head, when a random 

visual or auditory stimulus is perceived [3]. This 

signal is a positive voltage pulse generated 

approximately 300 milliseconds after the stimulus 

(see Fig. 1), although it can be found in ranges of 

250 to 400 milliseconds [4]. 

 

 
Fig. 1. Comparison between presence and absence of the Event 

Related Potential in the electrode O2. 

Source: own elaboration. 

 

The P300 is an electroencephalographic signal 

commonly used in the field of biomedicine for 

partial recovery of movement in paraplegic or 

quadriplegic patients  [5]. Studies that support this 

concept correspond to the following: 

 

•Brain-Computer Interfaces (BCI): BCIs based on 

the P300 signal have been developed to help people 

with physical disabilities communicate and control 

devices [6]. These applications range from 

controlling electric wheelchairs to writing text [7]. 

Studies such as evoked potentials are included, with 

which characteristics are extracted from the EEG 

signals after having applied pre-processing and 

filtering stages [8]. 

 

•Machine Learning Algorithms: Researchers have 

been applying a variety of Machine Learning 

algorithms, such as SVM systems, neural networks 

such as Deep Learning [9], and signal processing 

techniques to detect and decode P300 signals more 

accurately and efficiently. These studies begin with 

the communication between the electrode hardware, 

with the software that creates the stimuli, as well as 

the software that interweaves the EEG readings  

[10]. 

 

•Clinical Applications: Clinical applications have 

been explored, such as rehabilitating patients with 

spinal cord injuries [11] and improving the quality 

of life of people with paraplegia and quadriplegia. 

In addition, studies related to the creation of non-

invasive electrodes and effective noise reduction are 

mentioned  [12]. 

 

•Optimizing Visual Stimuli: Scientists have been 

investigating creating effective visual stimuli that 

could trigger reliable P300 responses, which is 

crucial for the accuracy of BCI systems, performing 

analysis on time series data, and explaining the 

difficulties and corrections to the main problems 

that occur in the capture of EEG signals  [13]. 

 

•Interdisciplinary Collaborations: And last but not 

least, researchers have worked on creating effective 

visual stimuli that could trigger reliable P300 

responses, which is crucial for the accuracy of BCI 

systems, performing analyzes on time series data, 

and explaining the difficulties and corrections to the 

main problems that occur in the detection of EEG 

signals  [14]. 

 

From these ideas, the research was carried out aimed 

at predicting the P300 signal using supervised 

learning models from Machine Learning [15]. This 

has the practical purpose of being able to implement 

the most favorable models for 

electroencephalographic studies, where 

circumstances such as noise and high distance 

between the reading region and the study region can 

lead to the use of Machine Learning models with 

greater efficiency in detecting brain patterns, 

difficult to detect with the naked eye, along with 

efficient supervised learning models for the 

detection of brain signals. 

 

The Logistic Regression [16], Decision Tree [17], 

Support Vector Machine, and K-Nearest-Neighbor 

[18] models were used, to which the exact same 

datasets were submitted, the models were trained, 

and each one returned the predicted data, thereby 

calculating the error that each one presented. The 

information provided to the models were the 

characteristics extracted from the 

electroencephalographic signals with the presence 

and absence of the P300, with their respective 

labels, with which the data was separated into 

training, validation and tests. 
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2. DEVELOPMENT 

 

The study began with the assembly of the helmet 

that would hold the electrodes that will measure the 

voltages around the scalp, located between the 

occipital, temporal and central regions of the head. 

Through the OpenBCI program, the electrical 

variations in each of the 16 electrodes were captured 

(see Fig. 2), and transmitted through LSL 

communication, which allows sending data frames, 

up to 3 frames of different data simultaneously. 

 

 
Fig. 2. Graphical User Interface of the OpenBCI program. 

Source: own elaboration. 

 

Once the LSL communication was initiated, the data 

frame was linked to the markers created by 

Psychopy, corresponding to the presence (1) or 

absence (0) of the P300 signal, through the random 

generation of visual and auditory stimuli. Having a 

total of 4 people in the study (see Fig. 3), each one 

of them was tasked with looking at a screen, 

counting how many times a sudden change of a 

constant blue square appeared, and pressing a button 

at each appearance of the stimulus [19]. This 

generated markers that indicated when a random 

stimulus had appeared and when it had not, 

providing the information to be intertwined with the 

OpenBCI electroencephalographic signals. 

 

 
Fig. 3. Participants during the P300 generation tests: 1/A (left), 

2/C (upper right), 3/Ma (middle right), and 4/Mo (lower right). 
Source: own elaboration. 

 

LabRecorder was the program in charge of unifying 

the LSL information that came from OpenBCI, with 

the LSL information that Psychopy returned, 

creating a final .xdf format file which was opened 

with a program created in Matlab called EEGLab 

[20]. Once imported into Matlab, the windows 

containing the presence or absence of the P300 

signal were created, 6 main characteristics were 

extracted from each electrode, which were the 

following: 

 

• The maximum peak of the signal: The 

highest value that the signal window 

reached. 

• The location of the maximum peak: The 

position in time of the peak of the signal 

window. 

• The center of the cross-correlation: At the 

time of performing the cross-correlation 

between an artificial signal that resembles 

the P300 signal, with the signal window to 

extract features, the value of the center of 

the correlation is obtained, where the 

higher this data is, the more similar it will 

be to the P300 signal. 

• The area under the cross-correlation curve: 

If the area is located with a value greater 

than the reference zero, it will indicate that 

it is closer to being a P300 signal. 

• The average power of frequencies from 4 

to 5Hz: The set of signals were transformed 

from the time domain to the frequency 

domain, and the average of the powers at 

the frequencies from 4 to 5Hz was 

calculated, and if the average power is 

high, it is an indication of being a P300. 

• The area under the signal curve: The area 

under the curve of the original signal was 
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calculated, which was useful information 

for the supervised learning models. 

 

Everything was saved in a spreadsheet (see Fig. 4), 

obtaining a total of 96 characteristics, due to the fact 

that the 6 characteristics were calculated for each 

electrode of the 16 that were used, and an additional 

column for the presence or absence marker of P300. 

 

 
Fig. 4. Dataset with its corresponding extracted characteristics. 

Source: own elaboration. 

 

Finally, data augmentation was applied for the 

datasets, maintaining the values within the standard 

deviation ranges, with an increase of 10 times the 

original dataset (see Fig. 5), in order to amplify the 

training of the Machine Learning models. 

 

 
Fig. 5. Histograms comparing the data from the original 

dataset (red) with the augmented dataset (blue). 

Source: own elaboration. 

 

Afterwards, the information from the datasets was 

entered into the training models, and with this each 

of them was validated and tested. Each one provided 

the results of satisfactory and erroneous predictions, 

which were subjected to metric evaluation, to 

finalize the analysis of these results and establish 

which would be the best predictors of the P300 

signal. 

 

 

 

 

3. RESULTS 

 

Once the confusion matrices were obtained from the 

participants, involving both the validation and the 

test ones, for the four types of models (see Fig. 6), it 

was observed that the confusion matrices related to 

SVM (Support Vector Machine) and KNN (K-

Nearest-Neighbors) have a higher number of True 

Positives and True Negatives, compared to the LR 

(Logistic Regression) and Tree (Decision Tree) 

values, which had many more False Positive and 

False Negative values. 

 

 
Fig. 6. Confusion matrices for the validation data (left) and the 

test data (right) with Logistic Regression (Green), Decision 

Tree (Purple), Support Vector Machine (Red) and K-Nearest-
Neighbors (Blue) from the participant 1/A. 

Source: own elaboration 

 

The F1 score is a number between 0 and 1, which 

indicates the percentage of correct answers that the 

model made when it has been trained and has been 

presented with new data to predict. A value close to 
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zero indicates that it has not been satisfactorily 

trained, therefore, it does not predict correctly, while 

a value close to one indicates greater precision in the 

predictions it makes. This score was the metric used 

to establish the best predictors of the P300 signal. 

 

3.1. Validation Data 

 

Performing the calculations of the F1 score of the 

four participants, and of both datasets per 

participant, being the original and the augmented 

data, the following graph was obtained (see Fig. 7). 

 

 
Fig. 7. F1 Score percentage of the four participants for the 

validation data. 

Source: own elaboration. 
 

This corresponds to 20% of the total data, since 70% 

of it is training data. 

 

3.2. Test Data 

 

This set corresponded to the test data with 10% of 

the total datasets, giving the following values as 

results (see Fig. 8). 

 

 
Fig. 8. F1 Score percentage of the four participants for the test 

data. 

Source: own elaboration. 

 

This allowed us to confirm that, in both validation 

and test cases, SVM and KNN were those that 

presented the best performance in predictions, and 

improved when the augmented data was entered, 

confirming the benefit of augmenting the data to 

train even better the Machine Learning models. 

 

 

4. CONCLUSIONS 

 

With these final results, it was possible to complete 

the project, where the following conclusions were 

drawn up: 

 

•With the help of the OpenBCI, Psychopy and 

Matlab programs, it was possible to obtain the most 

favorable results in terms of hardware with the 

helmet, and software with the communication of 

information via LSL. Psychopy resulted very 

effective in terms of establishing markers 

coordinated with the appearance of random visual 

and auditory stimuli, and with the use of 

LabRecorder the EEG signals were successfully 

anchored with the markers, being evidenced by the 

evoked potential seen at the O1 and the O2 

electrodes. Matlab allowed us to obtain the signals 

and markers to extract their characteristics and thus 

create the desired dataset for the study, along with 

data augmentation to improve the P300 prediction 

results. 

 

•The electroencephalography helmet has a high 

performance as long as the electrodes can be 

adjusted correctly on the scalp, since it is affected 

by the amount of hair the person can have at the time 

of carrying out the study. If possible, for people with 

a lot of hair, it is recommended to adjust the 

electrodes as deep to the helmet as possible, and if 

possible, use conductive gel to increase the 

conductivity of the electrodes on the head. 

 

•The characteristics extracted from each electrode 

during the study were sufficient to train the 

supervised learning models, since the analysis 

method was applied for each instant in which a 

stimulus appeared, allowing predictions to be made 

with each P300 marker that would appear in brain 

signals. 

 

•The Machine Learning models mostly presented an 

improvement in terms of P300 signal predictions 

when the original dataset got applied the data 

augmentation, due to the fact that having more data 

to train allowed them to guess correctly with a 

greater precision the new data, information that was 

initially received without the classes. 

 

•The supervised learning models “Support Vector 

Machine” and “K-Nearest-Neighbors” turned out to 

be the best predictors of the appearance of the P300 

signal in this study, which was less affected by 

circumstances such as noise, while it was more 

favored by the data augmentation. 
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