
ISSN: 1692-7257 - Volume 1 – Number 43 - 2024 
 

  

 
University of Pamplona 
       I. I. D. T. A.  

92 

 

 

 

Design and implementation of a state feedback control 

system for a Ball and Plate platform 
 

Diseño e implementación de un sistema de control por retroalimentación de 

variables de estado para una plataforma Ball and Plate 
 

 

Ing. Rosnnel David Moncada Diaz 1 PhD. Oscar Oswaldo Rodríguez Diaz 1 

 
1 Universidad Pedagógica y tecnológica de Colombia, DSP research group, Boyacá, Colombia 

 

Correspondence: rosnnel.moncada01@uptc.edu.co 

 

Received: October 15, 2023. Accepted: December 17, 2023. Published: March 16, 2024. 
 

 
 

How to cite: R. D. Moncada Diaz and O. O. Rodriguez Diaz, “Design and implementation of a state feedback control system for a Ball 

and Plate platform”, RCTA, vol. 1, no. 43, pp. 92–98, Mar. 2024.  

Recovered from https://ojs.unipamplona.edu.co/index.php/rcta/article/view/2824 

 

 

This work is licensed under a  

Creative Commons Attribution-NonCommercial 4.0 International License. 

 

 

 

 

Abstract: This article will show the modeling, development and implementation of a LQR 

controller with integral action for an electromechanical plant with two freedom axes, in this 

case a “Ball and Plate”. A LQR controller with integral action greatly improves the system's 

response times, thus allowing its steady-state errors to be drastically reduced and providing 

a rapid response to applied external disturbances. This is optimal for application since it is 

necessary to have quick and precise control actions that will keep the ball in the desired 

reference position. This will be achieved through the acquisition of data from a two-axis 

resistive piezoelectric sensor, which delivers the data of the current position of the ball to 

an Arduino Mega whose function is to apply the implemented algorithms of reading, to 

later send the control actions to two MG-995 servo motors that will be responsible for 

altering the position of the ball by balancing it in the two axes of freedom. The Matlab 

software and its simulation tool Simulink will be used to obtain the different controller 

constants and simulate the control loop. 

 

Keywords: Control, LQR controller, Ball and plate. 
 

 

Resumen: El presente artículo mostrará el modelamiento, desarrollo e implementación de 

un controlador LQR con acción integral para una planta electromecánica de dos ejes de 

libertad, en este caso un “Ball and Plate”. Un controlador LQR con acción integral mejora 

en gran medida los tiempos de respuesta del sistema, permitiendo de esta forma reducir 

drásticamente sus errores en estado estacionario y provee una rápida respuesta ante 

perturbaciones externas aplicadas. Esto es óptimo para esta aplicación pues es necesario 

tener acciones de control rápidas y precisas que harán que la bola se mantenga en la posición 

de referencia deseada. Se utiliza para la adquisición de datos un sensor piezoeléctrico 

resistivo de dos ejes, el cual entrega los datos de la posición actual de la bola a un Arduino 

Mega que tiene como función aplicar los algoritmos implementados de lectura, para 

posteriormente enviar las acciones de control necesarias a dos servomotores MG-995 que 

se encargan de alterar la posición de la bola mediante el balanceo de esta en los dos ejes de 

libertad. Se utiliza el software Matlab y su herramienta de simulación Simulink para la 
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obtención de las distintas constantes del controlador y la simulación del lazo de control. 

 

Palabras clave: Control, controlador LQR, Ball and plate. 

 

 

 

1. INTRODUCTION 

 

Ball and Plate is a two degree of freedom control 

system designed to maintain the position of a ball on 

a surface or plate at a desired reference point. To 

achieve this, it’s necessary to control its movement 

in both X and Y degrees of freedom. 

 

For this purpose, two independent systems can be 

devised for each axis, as proposed by. [1], [2],  In 

this way, if the system is considered ideal and linear, 

a transfer function that describes the prototype's 

behavior will be founded. [3], [4]. This open loop 

transfer function will have the main characteristic of 

belonging to a second-order critically damped or 

also called oscillatory model. [5], [6]. From this 

transfer function, a representation of the system in 

state space is obtained. [7], [8], with this space state 

representation, the controllability of each system 

will be analyzed, which provides information about 

the viability of the implementation of the controller. 

[9], Finally, begins the implementation of the LQR 

controller with integral action, which allows to 

generate a more precise and optimal control action 

unlike with conventional controllers. This control 

technique allows the large reduction of the 

oscillations present in the systems, in addition to 

increasing their efficiency [10], [11]. 

 

 

2. CONSTRUCTION AND DESIGN 

 

For the design, where followed the guidelines 

proposed by [2], [12] for the modeling of the system 

and the obtention of a transfer function, first where 

analyzed the system dynamics, from the ball and 

going downward to the servomotors. These 

considerations are taken into account: 

 

● The ball is rolling, not sliding. 

● Theres no friction on the system. 

● ball geometry is totally spheric and 

homogeneous. 

 

From this point, the analysis of the two axes X and 

Y was divided into two independent subsystems.  

Figure 1 shows the considerations of each axis and 

the variables of the model. 

 
Fig. 1. Diagram for the analysis of the motion equations in each 

axis of the plant. 
Source: One dimension modelling [13] 

 

In this manner, two equations of motion for the ball 

are derived for each axis as follows: 

 

𝑑2(𝑥,𝑦)

𝑑𝑡2 =
𝑚𝑏⋅𝑟𝑏⋅(𝑥⋅

𝑑2𝛼1,2

𝑑𝑡2 −𝑔⋅𝑠𝑒𝑛𝛼1,2)

𝑚𝑏⋅𝑟𝑏
2+𝐼𝑏

    

(1) 
 

As observed in equation (1), it is necessary to 

linearize the transfer function to eliminate the 

sinusoidal term from the dynamics. This is achieved 

by employing the Taylor series approximation for 

the sine function, which states that the sine of an 

angle can be approximated by the angle itself when 

the angle is close to 0. Angles of freedom ranging 

from -15 to 15 degrees are considered. [14]. Thus, it 

is possible to linearize the system for an operating 

range close to the center of the sensor, resulting in 

the following motion equation for the system (2): 

 

                
𝑑2(𝑥,𝑦)

𝑑𝑡2 =
𝑚𝑏⋅𝑟𝑏

2⋅𝑔⋅𝛼1,2

𝑚𝑏⋅𝑟𝑏
2+𝐼𝑏

         (2)  

 

Based on this model of the plant, the following 

scheme must be followed presenting the total 

transfer function of the system including the internal 

transfer function of the servo motors. 

 
Fig. 2. Ball and plate open loop diagram. 

Source: self-elaboration. 
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To obtain the transfer function, the measures 

outlined in the linearized system equation are first 

taken into account for obtaining the two transfer 

functions. These measures are presented in Table 1. 

 
Table 1: Characteristics, parameters, and dynamics of the 

system. 

 

Resistance R 4 𝛺 

Inductance L 2.75 uH 

Electromotive 

Constant 

Kb 0.0275 V/(rad/s) 

Torque constant Kp 0.0275 Nm/A 

Inertia Constant J 3.2284 p(Kg*m*m) 

Friction constant B 3.5077 u(Nms/rad) 

Ball diameter Rb 0.015 m 

Ball mass Mb 0.11 Kg 

Servo arm 

longitude 

d 

 

0.017 

 

m 

 

Distance to base Lp 0.073 m 

 

With the information gathered from the previous 

table, the following transfer functions are finally 

obtained for both axes. 

 

X axis:  

𝑋(𝑠) =
0.0103

𝑆2
 

Y axis:  

𝑌(𝑠) =
0.006483

𝑆2
 

 

Figure 3 illustrates the final implementation of the 

physical system: 

 

 
Fig. 3. Ball and Plate. 

Source: self-implementation. 
 

 

3. STATE SPACE CONTROLLER 

 

For the controller design, the first step is to obtain 

the equivalent state-space model. Starting with the 

two transfer functions obtained in section 2, the 

equivalent closed-loop transfer function is 

determined, and an equivalent state-space model is 

derived for each axis. [7]. 

For Y axis: 

 

 
 

 
 

 
 

For X axis: 

 
 

 
 

 
 

For both cases, a D matrix is determined to be equal 

to 0. To verify the operation of each axis in open-

loop, both systems are implemented in Simulink, as 

shown in Figure 4. 

 
Fig. 4. Space state system representation 

Source: Self-Implementation. 
 

Obtaining an oscillatory response from the system 

as observed in Figure 5, we can generalize this 

behavior, considering that both subsystems are 

critically damped. 

 

 
Fig. 5. Open loop system response. 

 Source: Self-Implementation. 
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To continue with the controller design, the 

controllability of the system is now being studied. 

This will determine whether it's possible to 

implement a state feedback controller for this 

system. To find the controllability, we will 

determine the rank of the controllability matrix. If 

the rank is N, where N is the number of state 

variables of the system [5]. 

 

 

                      𝜃𝑐 = [𝐵, (𝐴 ∗ 𝐵) ]                  (3) 

 

 

In (3), the method to determine the controllability 

matrix of the system is showed. From this, the 

controllability matrices for each axis are obtained as 

follows: 

 

                      
 

Given that both matrix have a rank of 2, both 

systems are controllable. 

 

The design of a LQR controller with integral action 

is presented for each of the axes. To achieve this, the 

augmented matrix of the system are obtained in 

order to find the gain matrix and the integral gain of 

the controller [15]. 

 

The new state variable is a variable dependent on the 

error aiming for the steady-state error to be 0. To 

achieve this, we will have the following augmented 

matrix for each axis. 

 

X axis:  

         
     

   
Y axis: 

 

      
       

   
 

Now, two additional poles must be assigned in the 

left part of the imaginary axis of the complex plane 

S. Since this is a critically oscillatory system, its 

poles are known to lie on the imaginary axis. 

Consequently, any negative value can be assigned. 

For this case, the pole matrix was assigned as 

follows: 

𝑃𝑐𝑙 =  [−3, −4, −5] 
 

With the proposed poles, the value of the gain 

matrix was determined, resulting in the following 

gains for each axis: 

 

𝐺𝑐𝑙𝑥 =  [12, 46.989, 5825] 
 

𝐺𝑐𝑙𝑦 =  [12, 46.999, 9230] 
 

The first two values of the presented gain matrix will 

belong to the state variable gains, and the last value 

is the integral gain value of the controller.   

 

Now, LQR controllers with integral actions are 

implemented in Simulink as shown in Figure 6: 

 

 
Fig. 6. Block diagram of the systems for LQR controller with 

integral action. Source: Self-Implementation. 

 

And the following step responses are obtained for 

each axis as shown below: 

 

X axis:  

 
Fig. 7 Step response of the system with the implemented 

controller on the X-axis. Source: Self-Implementation. 
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Y axis: 

 

 
Fig. 8. Step response of the system with the implemented 

controller on the Y-axis. 

Source: Self-Implementation. 

 

This completes the design of LQR controller with 

integral action. 

 

4. RESULTS 

 

To verify the controller's performance, various 

disturbances were applied to the system. The same 

simulation presented in Figure 6 was used, but 

disturbances were added to the output as shown in 

Figure 9. 

 

 
Fig. 9. Block diagram of LQR controller with integral action 

add disturbances. 

Source: Self-Implementation 
 

Thus, a response to an impulse with disturbances 

was obtained as follows: 

 

 
Fig. 10. Step response with disturbances of the system with the 

implemented controller on the Y-axis. 

Source: Self-Implementation 

 

And for the other axis, we will have a response as 

follows.

 
Fig. 11 Step response with disturbances of the system with the 

implemented controller on the Y-axis 

Source: Self-Implementation. 
 

As observed in Figures 10 and 11, the system 

responds well to applied disturbances, whether 

positive or negative. This means that the system can 

effectively be perturbed in any direction on both 

axes, making it more robust and capable of 

correcting potential errors made during system 

modeling. Moreover, it suppresses almost all 

oscillations, unlike with other types of controllers. 

 

Here are the constants of a conventional PD 

controller that was initially implemented in the 

physical model: 

 

𝐾𝑝 =20, 𝐾𝑑 = 1.1 

 

In this way, the two impulse responses can be 

compared to verify the speed, efficiency, and 

accuracy of the two types of controllers. Figure 12 

shows the block diagram used in Simulink to 

compare both controllers. 

 

 
Fig. 12. Block diagrams for comparing the responses of the 

controllers. 

Source: Self-Implementation 
. 
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Fig. 13. Step response of the system with both controllers.  

Source: Self-Implementation 
. 

 

As seen in Figure 13, the line with thin dashed lines 

represents the response of the PD controller. It is 

evident that the system starts moving the ball 

towards the reference, but significant oscillations 

occur, indicating high instability in the system. 

These oscillations would require larger control 

actions and consequently more effort from the 

actuators, leading to potential physical problems in 

the future.  

 

In contrast, the thick dashed line shows how the 

system reaches the reference value more quickly, 

indicating greater efficiency and allowing for 

greater durability of the mechanical couplings in the 

system. 

 

5. CONCLUTIONS 

 

A "Ball and plate" control plant allows for modeling 

and observing, from an academic perspective, the 

issues arising from nonlinearities that may occur in 

real processes. Additionally, it is one of the most 

challenging types of systems to control due to its 

high instability induced by significant oscillations. 

These oscillations manifest in its two subsystems, 

complicating control even further as a result of their 

interdependence, particularly when aiming to 

achieve steady-state error equal to zero. 

 

Commonly used controllers are often inefficient for 

this type of plant as they lack precision, and their 

low effectiveness can result in permanent damage to 

the physical system. This issue can be overcome by 

using a LQR controller with integral action, which 

minimizes oscillations in the system and provides 

more precise control action, thus extending the 

equipment's lifespan. Therefore, the use of such 

controllers is proposed, especially when targeting 

second-order systems with sustained oscillations as 

control objectives. 
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