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Resumen: La OMS establece que más del 55% de las muertes en accidentes viales son de 

usuarios vulnerables, incluyendo un 3% de ciclistas. Aunque los vehículos autónomos 

pueden detectar objetos y personas en las carreteras, la detección de ciclistas y la predicción 

de sus movimientos siguen siendo desafíos significativos. Este artículo presenta resultados 

al comparar las arquitecturas YOLOv7, YOLOv8 y YOLO-NAS para detectar ciclistas 

urbanos. La metodología garantiza que los detectores se entrenaron bajo las mismas 

condiciones. Luego, se evaluaron con 111 imágenes de ciclistas utilizando métricas como 

IoU, precision y recall. Los resultados destacan ventajas y desventajas en cada arquitectura, 

lo que sugiere priorizar el tiempo de inferencia o la calidad de la detección de ciclistas en 

futuros trabajos. 

 

Palabras clave: Yolo, VRU, deep learning, detección de ciclistas, vehículo autónomo. 

 

 

 

Abstract: The World Health Organization (WHO) states that over 55% of road traffic 

accident fatalities involve vulnerable road users, including 3% who are cyclists. While 

autonomous vehicles are capable of detecting objects and individuals on roadways, the 

detection of cyclists and the prediction of their movements continue to pose significant 

challenges. This paper presents results from the comparison of YOLOv7, YOLOv8, and 

YOLO-NAS architectures for urban cyclist detection. The methodology ensures that the 

detectors were trained under the same conditions. Subsequently, they were evaluated using 

111 cyclist images with metrics such as IoU, precision, and recall. The results highlight 

advantages and disadvantages within each architecture, suggesting a priority for either 

inference time or the quality of cyclist detection in future work. 
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1. INTRODUCTION 

 

According to the 2018 World Health Organization 

(WHO) report, traffic injuries are the eighth leading 

cause of death for people of all ages (1.35 million in 

2016), with more than half of them falling into the 

category of pedestrians, cyclists, and motorcyclists, 

referred to as vulnerable road users (VRUs). A 

Vulnerable Road User (VRU) is a road user with an 

increased risk of being injured or killed in traffic 

because they are not surrounded by protective cover 

that would significantly reduce the severity of an 

accident [1]. This definition encompasses all types 

of pedestrians, cyclists, motorcyclists, as well as 

individuals with disabilities or reduced mobility. 

Correctly identifying VRUs is one of the most 

challenging perception tasks for autonomous 

vehicles (AVs). 

 

Due to the current and future surge in autonomous 

driving vehicles [2], it is crucial to develop effective 

vulnerable road user (VRU) detection systems for 

autonomous vehicles (AVs). Several studies have 

proposed solutions primarily for pedestrian [3], [4], 

[5], [6], [7], [8]. In contrast, the detection of cyclists 

has not received the same emphasis, probably 

because it has been identified as one of the most 

challenging perception tasks faced by an AV [9]. 

[10]. This complexity is related to factors such as the 

visual complexity of cyclists, the variety of possible 

orientations, tilts, and elevations, different aspect 

ratios, diverse appearances, occlusions, reflections, 

shadows, and backgrounds that can confuse 

detectors [11]. 

 

In order to enhance the integration of autonomous 

vehicles (AVs) into traffic in the coming years, it 

will be necessary to improve their vulnerable road 

user (VRU) detection capabilities, especially with 

regard to cyclists. In many countries, cyclists and 

vehicles share the road, and it would be 

unacceptable for injuries and fatalities among 

cyclists to increase due to collisions with AVs. 

 

All of the above justifies the development of urban 

cyclist detection systems as vulnerable road users, 

to be implemented in autonomous [12]. 

 

Some authors have proposed cyclist detection 

systems based on machine learning techniques [13], 

but the progress of deep learning architectures has 

demonstrated the effectiveness of detectors based on 

YOLO architectures, surpassing the performance of 

other architectures [14]. 

 

This article proposes a comparison of cyclist 

detectors trained with the models of the three latest 

YOLO architectures: YOLOv7, YOLOv8, and 

YOLO-NAS. The proposed methodology includes 

the collection and curation of a dataset, the training 

of the architectures, and the use of appropriate 

metrics to evaluate their performance. The results 

and their analysis are presented in detail as input for 

future projects aiming to optimize and apply them in 

the field of autonomous driving, particularly in one 

of its crucial branches: human factors in 

autonomous driving. 

 

 

2. METHODOLOGY 

 

Figure 1 illustrates the flowchart representing the 

applied methodology for comparing the YOLO 

architectures. The process began with the creation 

of the dataset, which was used to train each of the 

three architectures in the subsequent stage: 

YOLOv7, YOLOv8, and YOLO-NAS. The 

prediction results were then used to calculate 

performance metrics such as Intersection over 

Union (IoU), Recall, Precision, and inference time 

for each architecture. With these results as the 

output of the process, an objective comparison is 

generated. 

 

 
Fig. 1. Flowchart of the developed methodology during the 

process. 
Source: own elaboration. 

 

Because the training of YOLO detectors should be 

focused on the detection of urban cyclists, who 

would eventually be captured on the road by a 

moving autonomous vehicle (contributing to the 

improvement of collision avoidance strategies 

between such vehicles and cyclists as vulnerable 

road users), it was decided to create a dataset 

consisting of a combination of images acquired 

from the front windshield of a moving vehicle and 

publicly available images (without download and 

usage restrictions) of urban cyclists extracted from 

the web through a web scraping software called 

Bitzi, previously developed at the Metropolitan 

Technological Institute of Medellin and registered 

with the National Copyright Office in the year 2015 

[15]. 
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From the initially collected dataset, two major 

groups were selected. The first group consisted of 

images featuring a single cyclist, while the second 

group comprised images with multiple cyclists. 

Subsequently, data augmentation was performed on 

the selected RGB images to diversify the dataset and 

enhance the performance of the models to be 

trained. While it is common to use data 

augmentation for geometric transformations such as 

rotation, scale, and translation, adjustments can also 

be made to brightness, contrast, saturation, and hue, 

as well as applying focus changes, adding noise, 

among others [16], [17]. In our case, data 

augmentation involved changes in the brightness 

and contrast of the images to simulate different 

lighting conditions. Adjustments in saturation and 

hue were made to impact the appearance of colors. 

Random noise was added to simulate adverse 

weather conditions, and blur filters were applied to 

modify the appearance of cyclists in the images. The 

transformations applied to the dataset can be 

observed in Figure 2. 

 

 
Fig. 2. Data augmentation applied to the labeled dataset's RGB 
images. In the left column, original RGB images are presented, 

while the corresponding transformations are shown in the right 

column. In row (a), salt and pepper noise was applied to the 
image, in (b) an HSV color space filter, and in (c), a blur was 

applied. 

Source: own elaboration 

 

The YOLO ("You Only Look Once") architectures 

have been chosen to train the detectors due to their 

ability to detect objects in a single pass through an 

image in real-time, making them particularly 

efficient in terms of processing speed. The YOLO 

approach is based on a single convolutional neural 

network (CNN) that takes an image as input and 

produces outputs in the form of bounding boxes that 

identify and locate objects in the image. This allows 

YOLO to simultaneously detect multiple objects in 

a single image [18]. 

 

The latest versions, YOLOv7, YOLOv8, and 

YOLO-NAS, represent the cutting edge of object 

detection, and their application in cyclist detection 

will help establish the advantages of these 

architectures over others reported in recent works 

for cyclist orientation detection, such as [13]. 

 

YOLOv7 [19] follows the same architecture as the 

original YOLO, consisting of three fundamental 

components: the backbone, the neck, and the head. 

Each of these components plays a crucial role in the 

image recognition and object detection process. The 

purpose behind the development of YOLOv7 was to 

design an architecture capable of predicting 

bounding boxes with higher accuracy than other 

models while maintaining the same speed in 

inference [20], [14]. To achieve this purpose, 

YOLOv7 introduced an improvement in the 

efficiency of the YOLO backbone, taking into 

account memory requirements and gradient descent 

backpropagation to enhance the learning 

capabilities of the network. It also includes re-

parametrization planning, allowing internal 

variation of precision levels and inference speeds 

based on the application. 

 

In 2023, YOLOv8 [21] emerged with the same 

characteristics as its predecessor YOLO 

architectures but incorporated an anchor-free model, 

enabling it to directly predict the center of an object. 

This mitigates challenges associated with regions 

around images, such as a lack of generalization and 

difficulty in handling irregularities, thereby 

reducing the number of prediction rectangles. 

Additionally, YOLOv8 improves the speed of the 

candidate detection generation process after the 

inference. YOLOv8 also incorporates an image 

augmentation strategy (Spatial Pyramid Pooling 

Feature), allowing the model to learn objects in new 

positions, partial occlusions, and against variations 

in surrounding pixels [22]. 

 

YOLO-NAS is an innovative object detection model 

that maximizes the latest advances in Deep Learning 

technology, overcoming limitations of previous 

YOLO versions. The term "NAS" refers to "Neural 

Architecture Search," which involves optimizing 

algorithms to automate the process of designing 

neural network architectures [23]. The primary goal 

of YOLO-NAS is to achieve an optimal balance 

between model accuracy, computational 

complexity, and model size. This architecture 
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represents the forefront of real-time object detection 

[14]. 

 

The training of each of the three YOLO 

architectures was conducted on a Colab Pro 

computing machine provided by Google Colab. The 

dataset was distributed in three different proportions 

for training: 72.5% of the images (1689 images) 

were allocated to the training set, 20% (465 images) 

to the validation set, and another 7.5% (176 images) 

to the test set. The machine's specifications are 

presented in Table 1. 

 
Table 1: Characteristics of the assigned computing machine -

Colab Pro-. 

 
Device Characteristic 

CPU Intel Xeon E5-2686 v4 (2.4GHz, 
12 cores) 

 

GPU 

 

NVIDIA Tesla T4 
CUDA cores: 72 

Memory: 16 GB GDDR6 

Bandwidth: 320 GB/s 
 

Memory 32 GB 

 
Storage 500GB 

 

The training characteristics were also the same, and 

expressed as hyperparameters, they can be seen in 

Table 2. 

 
Tabla 2: Hyperparameters assigned for the training of YOLO 

architectures. 

 
Hyperparameter Value 

warmup_initial_lr 1e-6 

lr_warmup_epochs 2.0 

initial_lr 0.001 

max_epochs  30 

batch size 16 

 

All code implementations were developed using the 

Python programming language on Colab, with the 

PyTorch framework and loading pre-trained models 

(transfer learning) for the three YOLO architectures. 

In Table 3, the sources of the models are presented. 

 
Table 3: Origin of the pre-trained YOLO models. 

 
   Modelo Repositorio 

YOLOv7 https://github.com/WongKinYiu/yolov7   

YOLOv8 https://github.com/ultralytics/ultralytics 

YOLO-NAS https://github.com/Deci-

AI/supergradients/blob/master/YOLON
AS.md 

 

Comparing network architectures, especially 

classifiers and object detectors in images, requires 

an evaluation through performance metrics. Metrics 

are calculated for a set of images based on the 

predictions made by the detectors (in this case, for 

cyclists). These predictions can be incorrect (False 

Positives FP, False Negatives FN) or correct (True 

Positives TP, True Negatives TN), and the ratios of 

these values are used to compute metrics such as 

Error, Accuracy, Precision, Recall, F1-score, and 

mAP. Depending on the specific requirements, 

some or all of these metrics may be utilized. In this 

study, the metrics IoU (Intersection over Union), 

precision, and recall, as well as the relationship 

between the latter two, will be employed to assess 

the performance of the trained architectures. 

 

Precision is a metric used in object detection tasks 

to assess the accuracy of positive predictions made 

by the model. It helps determine the reliability of the 

model in identifying positive instances, minimizing 

false positives. A higher precision indicates a lower 

rate of falsely predicted positive instances [24]. 

 

 (1) 

 

Precision is calculated using Equation 1, where TP 

represents the number of correctly predicted 

positive instances, and FP represents the number of 

instances falsely predicted as positive. 

 

Recall measures the proportion of actual positive 

instances correctly identified by the model. Recall 

quantifies the model's ability to correctly detect and 

capture object instances. A higher recall indicates a 

lower rate of missed detections [24]. 

 

            (2) 

 

Recall is calculated using Equation 2, where TP 

represents the number of instances correctly 

predicted as positive, and FN represents the number 

of instances falsely predicted as negative. 

 

In the following section, the obtained results will be 

presented, including details of the application of 

other metrics and the generation of curves, relevant 

to the comparison process. 

 

 

 

 

 

https://github.com/WongKinYiu/yolov7
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3. RESULTS 

 

In Table 4, you can observe the training times for 

each evaluated YOLO architecture. It is important 

to note that the training settings and processing 

machines used were the same, as specified in the 

methodology section. 

 
Tabla 4: training time. 

 
Model Training time 

(h) 

YOLOv7 3.5 

YOLOv8 3.83 

YOLO-NAS 2.33 

 

Under the same training conditions, the YOLOv8 

architecture required more time (3.83 hours), while 

the YOLO-NAS architecture was trained in just 

60% of that time. 

 

 
Fig. 3. Images evaluated. In (a) and (b), images of a cyclist. In 

(c) and (d), images of multiple cyclists. 

Source: own elaboration 

 

For a total of 111 images of cyclists (52 images of a 

single cyclist and 58 of multiple cyclists), ranging 

from images with a perfectly defined instance (a 

cyclist perfectly defined and without occlusions) to 

images with multiple instances with occlusions, as 

shown in Figure 3, values of predictions affecting 

the calculation of precision and recall metrics were 

obtained. These values include true positives (TP), 

false positives (FP), and false negatives (FN), and 

the results can be observed in Table 5. The table also 

includes the Intersection over Union (IoU) with a 

threshold value of 50% overlap. This indicates that 

a detection is considered effective if the Jaccard 

index (IoU) between the detection and the ground 

truth is greater than 0.5 [25], as illustrated in Figure 

4. 

 

 

 

 
Table 5: Values of relevant predictions for each YOLO model. 

 

Arquitecture TP FP FN IoU 

YOLOv7 182 100 91 0.4043 

YOLOv8 240 42 49 0.6083 

YOLO-NAS 244 38 26 0.7002 

 

 

 
Fig. 4. Calculation of the Intersection over Union (IoU) for an 

image from the evaluation group. The green box indicates the 

ground truth region, while the red box indicates the detection 
region. 

Source: own elaboration 

 

From Table 5, it can be inferred that YOLO-NAS 

generates a bounding box closer to the ground truth 

region of the evaluated image group. The TP, FP, 

and FN predictions from Table 5 were used to 

calculate the performance metrics recall (proportion 

of true positives with respect to all cyclists present 

in the ground truth) and precision (proportion of true 

positives with respect to all detections made). The 

results can be observed in Table 6. 

 
Table 6: Performance evaluation results with precision and 

recall. 

 

Arquitecture Precision Recall 

YOLOv7 0.6612 0.6695 

YOLOv8 0.8854 0.8439 

YOLO-NAS 0.8825 0.8836 

 

Table 6 highlights the superior performance values 

for each metric. In terms of precision, YOLOv8 and 

YOLO-NAS outperform YOLOv7, indicating that 

the trained versions v8 and NAS are generating 

detections with fewer false positives and, therefore, 

are more accurate in detecting images where there is 

a higher probability of confusing cyclists with other 

road actors (such as motorcyclists). In the case of 

recall, it is the YOLO-NAS architecture that 

surpasses the others, indicating that this detector is 

more effective in finding all cyclists present in the 

image. This metric is of utmost relevance to our 

work because in an environment where autonomous 

vehicles are the predominant road actors, the best 
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detector will be the one that detects most cyclists 

and reacts accordingly. 

 

Figure 5 depicts the Precision-Recall (P-R) curve 

for the three trained YOLO detectors, using an IoU 

threshold of 0.5. It is clear from the curve that the 

detection algorithm achieving the best balance 

between recall (0.8836) and precision (0.8825) is 

YOLO NAS. 

 

 
Fig. 5. Precision-Recall curve for the evaluated YOLO 

detectors. 
Source: own elaboration 

 

The superiority of YOLO-NAS over the other 

detectors is evident. On the other hand, YOLOv7 

generates a significant number of false positives 

compared to the other two architectures. 

 

 
Fig. 6. Behavior of the detectors when the threshold is varied 

(F1 vs. Thresholds curve). 

Source: own elaboration 

 

Despite the good result in the precision metric for 

the YOLOv8 architecture detector, the number of 

detected cyclists is lower than the quantity detected 

by YOLO-NAS. 

 

The system's behavior when varying the threshold 

to determine if a detection is entirely correct or not 

can be observed in Figure 6. 

 

The F1 vs. Threshold curve shows how the F1 

metric varies as the model's decision threshold is 

adjusted. As the threshold increases, the model's 

tolerance decreases, and it can be observed that the 

YOLOv7 architecture performs much worse than 

the other architectures. The IoU threshold at 0.5 

appears to be the most suitable for deciding if a 

detection is correct or not. 

 

The inference times for each architecture based on 

the number of cyclist instances in the images can be 

seen in Table 7. Due to the complexity of the models 

of YOLOv8 and YOLO-NAS compared to 

YOLOv7, the time it takes for YOLOv7 to detect 

cyclists is lower. The time required for YOLO-NAS 

to detect multiple cyclists in an image is up to 5 

times higher than the time required by YOLOv7. 

 
Table 7: Inference time (Ti) for each architecture. 

 

Arquitecture Ti for  

1 cyclist 

(ms) 

Ti 

multiple cyclist 

(ms) 

YOLOv7 8.3 15.5 

YOLOv8 9.4 84.3 

YOLO-NAS 29.2412 79.1275 

 

 

4. CONCLUSIONS AND FUTURE WORK 

 

In this article, a performance evaluation has been 

conducted on the YOLO architecture versions 

known as YOLOv7, YOLOv8, and YOLO-NAS 

when applied to the detection of urban cyclists. Our 

goal has been to assess their effectiveness in 

addressing challenges associated with detecting 

cyclists on urban roads in an environment where, 

eventually, autonomous vehicles would be the 

predominant road actors. To achieve this, we trained 

the YOLO architectures with a combined dataset, 

consisting of our own images and images obtained 

through web scraping, all manually labeled. 

 

We implemented a robust training and testing 

strategy. The strategy included training with 

common features, such as the database, the number 

of epochs, hyperparameters, and test images. 

 

The evaluation of the YOLO architectures utilized 

the Recall and Precision metrics based on the data 

of True Positives (TP), False Positives (FP), and 

False Negatives (FN), with an IoU of 50% in the 

detection of cyclists across 111 images with diverse 

characteristics and instances of cyclists. 
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This methodology allowed us to establish a solid 

foundation for comparing the performance of the 

YOLO architectures in question when applied to the 

detection of cyclists. It enabled us to draw 

meaningful conclusions for the next stage in the 

development of a larger-scale project that 

incorporates both cyclists and autonomous vehicles. 

 

The conducted experiments allowed us to establish 

that the YOLO-NAS architecture demonstrated 

superior performance in both recall and IoU for the 

region of cyclist detection in the images. YOLOv8 

showed better results in precision but lagged behind 

YOLO-NAS in recall. On the other hand, YOLOv7 

performed below the other two architectures in both 

metrics, IoU, prediction values, and even in training 

time. 

 

Regarding the visual results (purely qualitative), the 

architectures exhibited limited performance when 

scenes were distant or had poor lighting conditions. 

Additionally, in some cases, cyclists were not 

detected when partially obscured by different 

objects or other cyclists. In scenes with favorable 

lighting conditions, unobstructed cyclists (or low 

occlusion), as well as a common aspect ratio 

between cyclist and bicycle, YOLOv8 and YOLO-

NAS outperformed YOLOv7, successfully 

detecting all instances of cyclists. 

 

In an environment where autonomous vehicles are 

the predominant road actors in urban areas, a cyclist 

detector should meet the following basic 

requirements: detect all cyclists and do so in the 

shortest possible time. In that line of thought, 

YOLO-NAS is a detector with excellent 

performance concerning metrics, but the time it 

requires to detect a cyclist (or multiple cyclists) in 

an image is up to 5 times greater than the fastest 

detector (YOLOv7). Thus, under the training and 

evaluation conditions conducted in this study, 

YOLOv8 emerges as the architecture with the best 

performance for detecting cyclists on urban roads 

from an autonomous vehicle. 

 

In summary, when evaluating different architectures 

for cyclist detection on the road, it is concluded that 

there is no one-size-fits-all best model. The choice 

of the model will depend on the specific needs of the 

application. For future work, it would be beneficial 

to expand the analysis with other datasets containing 

greater diversity and a larger number of images, 

under more comprehensive training conditions, and 

with faster processing machines. 

 

Future work will enable fine-tuning of the presented 

architectures through hyperparameter optimization. 

 

In general, this study serves as a foundation for 

future research efforts aimed at enhancing the 

effectiveness of cyclist detection systems from 

autonomous vehicles and minimizing the indicators 

of injured or deceased cyclists on the road due to 

collisions with motorized vehicles, whether 

autonomous or not. 
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