
ISSN: 1692-7257 - Volume 1 – Number 43 - 2024

University of Pamplona
 I. I. D. T. A.

9

Insights into software architecture competencies

integrating industry and academic perspectives

Visión de las competencias en arquitectura de software integrando las perspectivas

de la industria y la academia

PhD. Wilson Libardo Pantoja Yépez 1, PhD. Andrés Fernando Solano A. 2,

PhD. Ajay Bandi 3, PhD. Julio Ariel Hurtado Alegría 1

1 Universidad del Cauca, Facultad de Ingeniería Electrónica y Telecomunicaciones, Grupo I+D IDIS, Popayán, Cauca,

Colombia.
2 Universidad Autónoma de Occidente, Facultad, Programa o Grupo de Investigación, Cali, Valle, Colombia.

3 Northwest Missouri State University, Maryville, USA

Correspondence: wpantoja@unicauca.edu.co

Received: November 8, 2023. Accepted: January 10, 2024. Published: February 25, 2024.

How to Cite: W. L. Pantoja Yépez, A. F. Solano Alegría, A. Bandi, and J. A. Hurtado Alegría, “Insights into software architecture

competencies integrating industry and academic perspectives”, RCTA, vol. 1, no. 43, pp. 9–23, Feb. 2024.

Recovered from https://ojs.unipamplona.edu.co/index.php/rcta/article/view/2798

This work is licensed under a

Creative Commons Attribution-NonCommercial 4.0 International License.

Abstract: (Purpose) Training a software architect is a complex task requiring a mix of

experience and specialized knowledge that is difficult to achieve in the university context.

This article seeks to determine the minimum competencies a software architect should

achieve, covering industry expectations and the training context of universities and higher

education institutions. (Methods) We conducted an action research cycle to identify and

document these competencies, in which a study was designed based on surveys and

workshops involving software engineers from industry and university professors who teach

courses related to architecture design and evaluation. We defined the problem and research

questions to contextualize the case study. A literature review was conducted to deepen the

study topic and adequately design the study instruments. According to the purpose and with

the established literature context, the study was designed, executed, and reported. Finally,

a reflection on the results and the lessons learned was carried out, closing the action

research cycle. (Results) As a first finding, the study shows a set of 11 essential

competencies at the software architecture level that the industry expects from graduates, all

of which are technical competencies and none of which are soft competencies. As a second

finding, the study determined that 16.1% of universities do not address the mandatory

competencies, and 11.7% do not address them. (Conclusion) The discrepancy between what

is taught in universities and what the software industry expects is a problem evidenced

throughout this study. Aligning software architecture courses with industry requirements is

crucial for computer science, systems engineering, and related program curricula. However,

imparting industry-demanded competencies to undergraduate students poses numerous

challenges. Knowing the skills required by industry is the first step in creating courses that

will help the employability of recent graduates. Identifying which competencies can be

incorporated with less effort and greater efficiency allows us to trace a route in which

universities can start this path towards meeting the expectations of the software industry.

Digital Object Identifier: 10.24054/rcta.v1i43.2798

https://ojs.unipamplona.edu.co/index.php/rcta/article/view/2798
https://creativecommons.org/licenses/by-nc/4.0/
https://orcid.org/0000-0002-7235-6036
https://orcid.org/0000-0002-1159-3767
https://orcid.org/0000-0003-2434-736X
https://orcid.org/0000-0002-2508-0962
https://creativecommons.org/licenses/by-nc/4.0/
https://ojs.unipamplona.edu.co/index.php/rcta/article/view/2798

ISSN: 1692-7257 - Volume 1 – Number 43 - 2024

University of Pamplona
 I. I. D. T. A.

10

Keywords: Software architecture competencies, recent graduates, software engineering,

action research, software industry.

Resumen: (Propósito) La formación de un arquitecto de software es una labor compleja

que requiere de una mezcla de experiencia y conocimiento especializado que es difícil

lograr en el contexto universitario. Este artículo busca determinar las competencias

mínimas que debe lograr un arquitecto de software cubriendo la expectativa de la industria,

así como el contexto formativo de las universidades e instituciones de educación superior.

(Métodos) Para identificar y documentar estas competencias, se realizó un ciclo de

investigación-acción, en el cual se diseñó un estudio basado en encuestas y talleres en el

que participaron ingenieros de software de la industria y profesores universitarios que

imparten cursos relacionados con el diseño y evaluación de la arquitectura. Para dar

contexto al estudio de caso se sitúa de forma específica el problema y se definen las

preguntas de la investigación. En paralelo, se realizó una revisión de la literatura para

profundizar en el tema de estudio para diseñar adecuadamente los instrumentos del estudio.

De acuerdo al propósito y con el contexto literario establecido, se diseñó, ejecutó y reportó

el estudio. Finalmente se realizó una reflexión tanto de los resultados como los aprendizajes

cerrando el ciclo de investigación-acción. (Resultados) Como primer hallazgo, el estudio

arroja un conjunto de 11 competencias esenciales a nivel de arquitectura de software que la

industria espera de los egresados de las cuales todas son competencias técnicas y ninguna

competencia blanda. Como segundo hallazgo, el estudio permitió determinar que las

universidades en un 16.1% no abordan las competencias obligatorias y en un 11.7% poco

se abordan. (Conclusión) La discrepancia entre lo que se enseña en las universidades y lo

que la industria de software espera es un problema que se evidencia a través de este estudio.

Alinear los cursos de arquitectura de software con los requisitos de la industria es crucial

para los planes de estudio de ciencias de la computación, ingeniería de sistemas y

programas relacionados. Sin embargo, desarrollar en los estudiantes, las competencias

demandadas por la industria, plantea numerosos restos. Conocer las competencias que

requiere la industria es el primer paso para crear cursos que ayuden a la empleabilidad de

los recién egresados. La identificación de qué competencias se pueden ir incorporando con

menor esfuerzo y mayor eficacia permiten trazar una ruta en la que las universidades

puedan iniciar ese camino hacia el cubrimiento de las expectativas de la industria de

software.

Palabras clave: Competencias en el aprendizaje, arquitectos de software, investigación-

acción; industria de software.

1. INTRODUCTION

Software Architecture (SA) is a fundamental area of

software engineering that ensures the quality of

software products; hence, academia and industry

have focused their expectations on designing a good

curriculum [1]. However, teaching software

architecture is still a challenging task; the teacher

needs to address problems with a complexity similar

to the real world, teamwork, and provide a special

accompaniment, among other challenges [2].

The role of the architect is very challenging in any

software project. An architect could be a person,

team, or organization that designs the system's

architecture (norma IEEE 1471-2000 [3]). The

primary motivation of a software architect is to

develop an architecture for the system. However, in

addition, a software architect plays every other

important role in the lifecycle of a software project.

A software architect understands the development

process, has knowledge of the business domain, and,

in addition, has analysis and programming skills. An

architect is a good communicator, knows the

organization's policies, and plays an essential role in

decision-making during the project. An architect is

a catalyst who improves communication and

develops understanding between clients and

developers [4] [5]. An architect is considered to be

a technical leader of the software project since, in all

technical decisions, the architect's participation as a

mediator of interests is essential [6].

ISSN: 1692-7257 - Volume 1 – Number 43 - 2024

University of Pamplona
 I. I. D. T. A.

11

The competencies students must achieve in the SA

field are extensive and complex. The first step for an

SA curriculum design that reduces the gap between

what is taught in the classroom and what the

industry demands is to know precisely the minimum

competencies the software industry expects from

recent graduates. The present article carries out a

methodology composed of a series of steps to obtain

this list of competencies. This section presents the

introduction. Section 2 offers the problem. Section

3 describes the related work, while section 4 shows

the design of the experience. Section 5 presents the

analysis of the results. Finally, section 6 includes a

set of conclusions and future work.

2. FUNDAMENTAL CONCEPTS OF

SOFTWARE ARCHITECTURE TRAINING

This section includes the fundamental concepts

around SA training.

2.1. Software Architecture

The concept of software architecture is continuously

evolving, and it is essential to understand the various

definitions that appear in the literature. A modern

definition might involve a set of fundamental

decisions regarding the structure of the software

system, which guides the design and construction of

the system [7] [8] [9]. This structure includes the

organization of the components, the way they

communicate, and the distribution of

responsibilities among them [10]. Software

architecture also addresses issues related to the

quality of non-functional attributes, such as system

performance, scalability, security, usability, and

maintainability [4].

Some of the frequently mentioned characteristics of

SA are [10]: (i) It is a primary system abstraction

that stakeholders use to think, design, code, and

communicate in terms of large conceptual blocks.,

(ii) It promotes high-level reuse and component

reuse, (iii) It influences development productivity

by reusing large frameworks to support the

construction of product lines, (iv) It ensures quality

throughout the software life cycle by explicitly

addressing quality attributes such as modifiability,

portability, scalability, and security.

2.2. Quality Attributes

Quality attributes refer to specific traits that a

software product satisfies, and each attribute is

associated with specific metrics that define the

quality levels of a software product [11]. Quality

attributes refer to specific traits that a software

product satisfies, and each attribute is associated

with specific metrics that define the quality levels of

a software product [12]. Proper management of

these quality attributes is crucial, as inappropriate

management poses significant business risk. The

architect must consider potential conflicts between

quality attributes and resolve them through trade-

offs.

2.3. Architectural Patterns

Architecture patterns refer to common solution

structures to similar design problems. Each pattern

describes a general software system structure or

high-level behavior that must satisfy a product's

functionalities, qualities, and constraints. These

patterns are chosen based on early design decisions,

such as satisfying functional requirements, non-

functional requirements, and system constraints

[13].

2.4. Competencies, skills and knowledge

Competence is defined as the ability to do

something [14]. Knowledge can be understood as

theoretical or practical understanding. For an

individual, competence is composed of knowledge

and skills.

According to Bass et al., in their book Software

Architecture in Practice [10], they defines duties,

skills, and knowledge. Duties, skills, and knowledge

form a triad on which the architectural competencies

of engineers are based. The skills and knowledge

support the execution of the competencies

(functions or duties) as shown in Fig. 1. The

following is an example of these three concepts:

• “Designing an architecture” is a duty.

• “Thinking abstractly” is a skill.

• “Patterns and tactics” are part of a body of

knowledge.

Fig. 1. Skills and knowledge support the execution of

competencies.
Source: [10].

ISSN: 1692-7257 - Volume 1 – Number 43 - 2024

University of Pamplona
 I. I. D. T. A.

12

3. THE PROBLEM

Traditionally, undergraduate engineering programs,

such as Computer Science and Engineering,

Information Technology, Software Engineering,

and Systems Engineering, include many courses in

which skills are developed and technical knowledge

related to software construction is imparted through

programming languages and development platforms

[15]. However, students in these programs lack

knowledge about SA and design problems [16]

despite their growing importance for the software

industry. Recent graduates lack sufficient skills in

making appropriate design decisions, applying

practices and knowledge related to software design

in the business context [17].

Existing literature on SA education and practice

point to different reasons for this lack of skills

related to software architecture and design [18].

First, there is a considerable gap between the

academic perception of SA and its practice in

industry [19]. Sometimes, the problems that the

industry considers most critical and challenging are

not given due importance for research or training in

second, there is a gap between the skills that the

industry expects from graduates in Software

Engineering and the skills taught in the curricula

[20]. Third, many institutions do not have a clear

vision of the topics in which software architects

should be trained [21].

Designing a Software Architecture course

curriculum requires aligning the course objectives

with the expectations of the Software Industry. It is

essential to define the competencies expected to be

developed [16].

A competency is the sum of knowledge and skills;

however, a competency is more than this; it implies

the ability to satisfy complex demands by

mobilizing and resorting to skills and attitudes in a

particular context [22]. We found various

competencies, skills, and knowledge that students

should develop in the SA area. For example:

• The primary skill of the architect is to design,

model, analyze, and evaluate software

architectures [23] [24]. The architect must

know how to apply patterns and frameworks to

create quality applications [25]. The

architecture of large-scale complex software

systems, which have many requirements and

millions of lines of code, requires very high

modeling and abstraction skills [26].

• Knowledge of multiple technologies enables

the software architect to choose the appropriate

technologies for the project. Although software

architects do not need to be technology experts,

the architect must stay current on technology

trends [27] [28].

• Understand the domain in which a system will

live; this involves understanding the business,

social, and operational environment in which a

system must operate [29] .

• Analytical skills are essential for the software

architect to quickly understand the problem,

diagnose possible root causes, and make critical

decisions for the Project [19] [30]. In addition,

architects require the ability to find the root

causes of high-level problems in existing

designs, such as why a system runs too slowly

or is not secure [28].

• Research skills are required to understand

complex situations and solve problems [31]

[32].

• Although architects should not be programming

experts, they should have minimal

programming skills to communicate with

developers [33] [31].

• Architectural decision-making is another

fundamental skill. An architect must learn to

make design decisions in environments where

much is unknown, where there is insufficient

time to explore all alternatives, and where there

is pressure to perform [19]. In addition, the

architect must make decisions collaboratively.

• It requires systemic and holistic thinking and

they consider problems from different

perspectives [28].

• In addition to the above, communication skills

such as speaking, writing, and presentations are

required to address complex problems with a

seemingly simple design that is easy [29] [34]

for software architects to supervise and work

closely with other members of the development

team (Teamwork), such as programmers [35]

[36]. Finally, negotiation and leadership are

essential for an architect to lead, present,

negotiate, and justify their designs and

architectural decisions [35] [6].

Developing the above skills will likely require a

great deal of time and experience. Therefore, the

objectives of an undergraduate SA course must

recognize the limitations of the target audience and

work with the resources available to the teacher. The

first step towards an SA curriculum design that

decreases the gap between what is taught in the

classroom and what the industry demands is to know

precisely the minimum competencies the software

ISSN: 1692-7257 - Volume 1 – Number 43 - 2024

University of Pamplona
 I. I. D. T. A.

13

industry expects from recent graduates. Therefore,

the research questions we pose are:

• What are the minimum competencies at the SA

level that the industry expects from a recent

graduate?

• How is academia addressing these industry-

defined competencies?

4. RELATED WORKS

Niño & Anaya proposes a curricular reform of the

software engineering area in systems engineering

programs [38]. The main product is the definition of

a map of professional competencies in software

engineering, structured in first and second-level

competencies. It also identifies the core subjects that

contribute to developing the identified

competencies.

Garousi et al. [18] conducted a literature review of

studies that address the difficulty software

engineering graduates have in starting their careers

due to the misalignment of the skills learned in their

undergraduate training with what the industry

needs. This study allows educators and hiring

managers to tailor their education/hiring efforts to

prepare the software engineering workforce better.

Rupakheti & Chenoweth [29] describe the ten-year

history of teaching an undergraduate SA course in

an undergraduate software engineering degree

program. Included are descriptions of what they

perceive to be the realistic goals of teaching SA at

this level. They describe that the primary goal of the

course is to prepare students for high-level design

situations in the industry by employing new and

pervasive technologies and processes in their

projects and correcting architectural problems in

existing systems.

Kiwelekar & Wankhede present a set of learning

objectives and their classification using the Revised

Bloom's Taxonomy (RBT) [39]. The analysis

highlights the generic cognitive skills required for

architecture modeling. One of the potential benefits

of classifying learning objectives is that different

educational processes, such as instruction, learning,

and assessment, can be effectively aligned using the

classification of learning objectives presented in this

study.

Paulisch et al. [38] studied the detailed role

description of an architect, and this included which

competencies they need to be achieved.

Taking into account the related studies, we

identified that there is no list of minimum

competencies in SA topics aligned with the needs of

the software industry, which would subsequently

allow teachers to characterize the needs and training

strategies for the role of software architects in

undergraduate programs.

5. METHODOLOGY

In this research, we used the action research method

proposed by Putman & Rock [40], which iteratively

performs the stages of planning, acting, and

reflecting.

To know the minimum competencies in the area of

SA that the industry expects in recent graduates of

systems engineering and related programs, we

carried out a first cycle of action research following

the following steps:

• Identify the problem and define the research

questions guiding the action research process.

• Analyze theory to develop an in-depth and

synthetic understanding of the research topic.

• Create a research plan.

• Execute the plan and analyze the data collected.

• Reflect on the results of the action research.

• Develop a next cycle based on the research

data.

Below, we explain each of the previous steps in

detail.

5.1. Step 1 - Identify the problem and define the

research questions guiding the action research

process

The problem to be solved and the research questions

are described in Section 3 and framed in the

difficulties in training undergraduate SA

competencies aligned with the expectations of the

software industry.

5.2. Step 2 - Analyze theory to develop an in-

depth and synthetic understanding of the

research topic

We conducted a literature review looking for

experiences in software architecture courses, and

from there, we were able to create a solid conceptual

basis, defining key concepts such as competence,

skill, and knowledge. In addition, we could compile

the competencies sought to be developed in the

courses.

ISSN: 1692-7257 - Volume 1 – Number 43 - 2024

University of Pamplona
 I. I. D. T. A.

14

5.3. Step 3 - Create a research plan

According to the research questions established in

this cycle, which seek to know the competencies in

the SA area that the industry expects from recent

graduates, we selected three appropriate data

collection methods: survey, workshop, and focus

group. Table 1, shows the specific instruments we

used to collect data. Each instrument allows us to

find and refine the list of expected competencies, as

shown in Fig. 2.

Fig. 2. Data collection instruments and their purpose.

Source: Elaborated by the authors.

Finally, we chose the appropriate statistical analysis

techniques and tools for the investigation:

• Google Forms to capture survey data.

• Jamboard for a workshop with industry

engineers to classify competencies.

• Studio R for processing data and generating

statistical graphs.

Table 1: Data collection instruments and their purpose.

No Instrument Goal

1 Literature

review.

Collect the list of competencies

of a software architect using the
literature review.

2 Professors’

evaluation
survey.

Evaluate the list of

competencies according to the
professors' criteria.

3 Engineers’

evaluation
survey.

Evaluate the list of

competencies according to the
engineers’ criteria.

4 Workshop

with industry

engineers.

Classify the competencies best

valued by industry into three

groups: mandatory, optional,
and out of scope of an

undergraduate course.

5 Survey of
mandatory

competencies

to professors.

Evaluate the competencies
classified as mandatory with

the academy.

6 Focus group

with

professors.

Discuss the validity of the list

of mandatory competencies

found.

Source: Elaborated by the authors

5.4. Step 4 - Execute the plan and analyze the

data collected

After planning the activities to be carried out in the

action research cycle, we executed the actions.

Next, we explain each of the instruments executed

and the results obtained.

5.4.1. Literature review

After a review of the literature, we obtained a

comprehensive list of 35 competencies of software

architects (see Table 6 in the Annexes). These

competencies are classified into the following

categories: Architecture Creation, Architecture

Analysis and Evaluation, Architecture

Documentation, Working with Existing Systems,

Other Competencies, Requirements Management,

Product Implementation, Product Testing, and

Selection of Tools and Technology. In the following

steps, we seek to analyze this list and filter the

competencies that the industry expects in recent

graduates. In subsequent sections, we will continue

to use the same competency identifiers given in

Table 6.

5.4.2. Professors’ evaluation survey

The list of competencies in Table 6 was submitted

for evaluation by a group of nine teachers in the area

related to Software Engineering. The group of

professors was asked to evaluate the Software

Architecture competencies acquired by their

students during the undergraduate training process

in each of their universities. For each competency,

they were asked to evaluate the level of importance

(or dedication) given to it in the Program, following

the following scale: (1) Not important, (2) Not very

important, (3) Neutral, (4) Important, (5) Very

important. The results of this experience can be seen

in Fig. 3.

ISSN: 1692-7257 - Volume 1 – Number 43 - 2024

University of Pamplona
 I. I. D. T. A.

15

Fig. 3. Evaluation of the 35 Software Architecture competencies

by university professors.
Fuente: Elaborated by the authors.

Subsequently, we passed the competency ratings

from Fig. 3 using the following formula:

Score = VotesNotImportant x 0 +

VotesFewImportant x 1 + VotesNeutral x 2 +

VotosImportant x 3 + VotosVeryImportante x 4

Thus, the ten most essential competencies, as rated

by professors, are shown in Table 2 below.

Table 2: The ten most essential competencies, as rated by

professors

No Competencia Puntaje

1 C03 34

2 C19 32
3 C18 31

4 C20 30

5 C26 30
6 C09 29

7 C21 29

8 C01 28
9 C02 27

10 C28 25

Source: Elaborated by the authors

5.4.3. Engineers’ evaluation survey

The list of competencies in Table 6 was submitted

for assessment by a group of 21 engineers from the

industry who are working as software architects or

related tasks. The group of engineers was asked to

evaluate the Software Architecture competencies

they expect from a recent graduate of a systems

engineering program or related career. For each

competency, they were asked to rate the level of

importance for the industry according to the

following scale: (1) Not important, (2) Not very

important, (3) Neutral, (4) Important, (5) Very

important. The results of this experience can be seen

in Fig. 4.

Fig. 4. Evaluation of the 35 Software Architecture competencies by software industry engineers.

Source: Elaborated by the authors.

ISSN: 1692-7257 - Volume 1 – Number 43 - 2024

University of Pamplona
 I. I. D. T. A.

16

Subsequently, we passed the competency ratings

from Fig. 4, using the following formula:

Score = VotesNotImportant x 0 +

VotesFewImportant x 1 + VotesNeutral x 2 +

VotosImportant x 3 + VotosVeryImportante x 4

Thus, the ten most essential competencies according

to the assessment of the engineers can be seen in

Table 3. In addition, we place in bold the

competencies that coincide with the evaluation of

the professors: C19, C18, C20, C21, and C02. Fig. 5

shows graphically the two sets of competencies and

their overlaps.

Fig. 5. Top-rated competencies according to academia and

industry.
Source: Elaborated by the authors.

Table 3: The ten most valued competencies according to the

survey of engineers (In bold are the coincidences between

industry and academia).

No Competencia Puntaje

1 C19 75

2 C24 73

3 C01 78
4 C23 68

5 C18 67

6 C20 67
7 C21 67

8 C15 65

9 C02 63
10 C09 63

Fuente: Elaborated by the authors

5.4.4. Workshop with industry engineers

The next step was to classify the competencies best

valued by industry into three groups: mandatory,

optional, and out of scope for an undergraduate

course. The list of competencies in Table 6 is too

broad to be addressed in an undergraduate university

course. Therefore, this activity seeks to classify and

reduce that list by looking for the most relevant

competencies for a training course.

This collaborative activity was conducted virtually

and synchronously using Google Meet and a

Jamboard with "stickers" for each competency. In

addition, the activity counted four systems

engineers with extensive experience in tasks related

to SA. The profile of the engineers can be seen in

Table 7 (in the Annexes section).

The steps involved in this activity were as follows:

• Classify the competencies of the given stickers

into three groups: mandatory, optional, and out

of scope for a recent graduate. Each of the five

members can decide to place the sticker in the

corresponding column. In case of doubt, they

can rely on the opinions of their colleagues.

They can also depend on the results of the

survey—maximum time: 10 minutes.

• Review as a group the classification made and

make any necessary adjustments. This review is

a space to refine the group work—maximum

time: 15 minutes.

• Socialize the results. It is a brief justification of

the classification made to the researcher. One

member can do it with the support of the

others—maximum time: 5 minutes.

The final result of this activity can be seen in Fig.

Fig. 6. Final result of the workshop with the classification of the

competencies.
Source: Elaborated by the authors.

5.4.5. Survey of mandatory competencies to

professors

The purpose of this last survey was to find out how

the competencies classified as mandatory as a result

of the collaborative activity are being addressed in

the universities. The steps carried out for this survey

were as follows.

ISSN: 1692-7257 - Volume 1 – Number 43 - 2024

University of Pamplona
 I. I. D. T. A.

16

• Search the internet for regional, national, and

international universities with Systems

Engineering and related programs.

• For each university, search the web for the

profiles of professors with a Software

Architecture teaching profile.

• Write e-mails to the selected professors inviting

them to participate in the survey.

The survey was completed by 18 universities, with

one professor from each institution (see Table 4).

Table 4: Professors who participated in the mandatory

competencies survey

No Universidad Ciudad/Paí

s

1 Universidad Autónoma de
Occidente

Cali-
Colombia

2 Benemérita Universidad

Autónoma de Puebla

México

3 Universidad Cooperativa de

Colombia

Popayán-

Colombia

4 Corporación Universitaria
del Caribe

Sincelejo-
Colombia

5 Corporación Universitaria

Comfacauca

Popayán-

Colombia
6 Institución Universitaria

Colegio Mayor del Cauca

Popayán-

Cauca

7 Universidad del Valle Cali-

Colombia

8 Pontificia Universidad
Javeriana

Bogotá-
Colombia

9 Universidad San

Buenaventura

Cali-

Colombia
10 Universidad de Antioquia Medellín-

Colombia

11 Universidad Nacional de
Colombia

Bogotá-
Colombia

12 Universidad del Cauca Popayán-
Colombia

13 Universidad de Extremadura España

14 Universidad de Boyacá Tunja-
Colombia

15 Universidad Santo Tomás

Seccional Tunja

Tunja-

Colombia
16 Universidad de Los Andes Bogotá-

Colombia

17 Universidad Pedagógica y

Tecnológica de Colombia

Tunja-

Colombia

18 Universidad Nacional de La

Plata

Argentina

Source: Elaborated by the authors

The question asked in the survey was: “Regarding

the mandatory competencies, we would like to know

how they are being addressed in your Institution by

answering according to the Likert scale: (1) Not

addressed, (2) Little addressed, (3) Neutral, (4)

Very much addressed, (5) Totally addressed”. The

responses to this survey can be seen in Fig. 6 where

it can be seen that all competencies have some

degree of "Not addressed" and "Little addressed."

Calculating totals, Table 5 shows the percentages of

the competencies in their five categories. It can be

seen that 16.1% of the universities do not address

the mandatory competencies, and 11.7% do not

address them very little.

Table 5: Professors who participated in the mandatory

competencies survey

Category Score

Not addressed 16.1%

Little addressed 11.7%
Neutral 22.8%

Very addressed 22.8%

Fully addressed 26.7%

Source: Elaborated by the authors

Fig. 6. Evaluation of the 10 Software Architecture competencies

by several universities.

Fuente: Elaborated by the authors.

5.4.6. Focus group with professors

The objective of this focus group was to share

experiences among a group of professors from

several universities in the way undergraduate SA is

taught. A list of professors at regional, national, and

international levels was organized, and the

invitation to the event was sent by e-mail with an

attached document containing details of the meeting

(introduction, roles, agenda, and questions to be

addressed). Although five professors initially

accepted the invitation, at the time of the

synchronous meeting, only professors from three

universities showed up: Universidad del Cauca,

Institución Universitaria Colegio Mayor del Cauca,

and Universidad Nacional de la Plata (Argentina).

The following questions were discussed during the

focus group:

1. Question 1: How are you developing the SA

competencies in your universities? (In which

courses, which semesters, what topics are

addressed, and what strategies are used to

recreate a real environment, among others).

2. Question 2: What do you think of these results,

do you agree, and what would you change about

ISSN: 1692-7257 - Volume 1 – Number 43 - 2024

University of Pamplona
 I. I. D. T. A.

17

the next classification? We surveyed a group of

software industry professionals on what SA

competencies they expect from a recent

undergraduate graduate. The competencies

were classified into three categories: a)

mandatory, b) optional, and c) out of reach for

a recent graduate. The results of this experiment

can be seen in Fig. What do you think of these

results, do you agree, and what would you

change about this classification?

The following is a summary of the two questions'

most essential points.

Question 1:

• “In our institution, the careers strongly

emphasize software development, but their

orientation is towards learning coding in

various programming languages. The subject of

SA does not have enough emphasis”.

• “In our university, there are three Software

Engineering courses in addition to the courses

called Project 1 and 2. The subject of SA is

studied with greater emphasis in the Software

Engineering II course. However, the subject is

so broad that it is not covered in its entirety”.

• “In our Institution we have two careers related

to Software Engineering and there are courses

that are organized according to the software life

cycle, that is, we have the subjects of analysis,

design, implementation, verification and

maintenance. However, Software Architecture

is dealt with in a chapter in a month within the

subject of Software Design”.

Question 2:

• “I agree with all the cards that have been

defined as mandatory, optional, and out of

scope. Furthermore, competencies can be

classified into two types. The first those related

to the development of a new system, and the

second, to the maintenance of a software system

along with its architecture.”

• “The competency related to doing source code

reviews, in principle causes me some

strangeness, but it could be related to reviewing

that the coding is correct according to the

proposed architecture.”

• “I would say that developing all the mandatory

skills, I would say, is somewhat costly for

undergraduate students. For example, just to

understand the value of doing a good

requirements specification we have to expose

our kids to complex domains where unfamiliar

terms appear. If it were a simple domain

students would not see the need to specify, but

do the coding directly. Similarly with SA, we

need to involve large projects to see the

importance of the different architectural

styles”.

• “On occasion we tried to expose the students to

modify an existing system (developed by the

professors) for them to study and modify the

architecture. This experience was very costly

to develop in each semester to prevent students

from overdoing the work. This meant that we

are now working with new projects, but with

changing requirements during the course of the

semester.”

• “In the corporate environment, it is becoming

increasingly common for developers to migrate

to another company that offers them a better

salary. This results in having to find new

developers and challenge them to modify

existing systems.”

• “I am of the opinion that competency 19:

Quickly understands business and customer

needs to ensure that requirements meet these

needs should not be in the Out-of-Scope

column but in Mandatory. This competency is

important to quickly appropriate the business

domain.”

• “When comparing the competencies classified

as mandatory by the industry sector, I feel that

many of them our students fail to develop in the

different subjects and projects that are

developed in class. We are left with the concern

about how to get students to get there.”

5.5. Step 5 - Reflecting on the results of action

research

At the end of the action research cycle, we have

found answers to the two research questions. As a

first finding, we have a set of minimum

competencies (from the mandatory category) at the

SA level that the industry expects from a recent

graduate:

1. C01: Clearly identifies the relevant software

quality attributes that will drive the architecture

of a software system to be built.

2. C02. Consistently design the software

architecture by defining how components

interact with each other.

3. C05: Independently evaluates a software

architecture to determine functional and non-

functional requirements satisfaction.

4. C08. Impartially performs a trade-off analysis

to evaluate architectures.

ISSN: 1692-7257 - Volume 1 – Number 43 - 2024

University of Pamplona
 I. I. D. T. A.

18

5. C11. Maintains existing systems and their

architecture to achieve the evolution of

software systems.

6. C12. Redesigns existing architectures for

migration to recent technologies and platform.

7. C18. Critically analyzes functional and quality

attribute software requirements.

8. C19. Understands business and customer needs

quickly to ensure that requirements meet these

needs.

9. C22. Periodically performs reviews of the

source code written by the development team.

10. C23. Develops reusable software components.

11. C28. Designs and implements test procedures

considering architectural aspects

(component/service types, integration).

To the previous set of competencies, we have added

competency C28 at the suggestion of the professors'

focus group.

As a second finding, and in response to research

question 2, it is generally difficult for the academy

to cover the teaching of this set of competencies. It

is evidenced by the professors' survey and the focus

group responses. We were able to show with the

survey that 16.1% of universities do not address

mandatory competencies and 11.7% do not address

them very much.

5.6. Step 6 - Develop a next cycle based on

research data

This cycle of action research will be the main input

to develop the second cycle of action research,

which is related to the creation of training patterns

that will guide the teacher in the design of SA

courses for undergraduate programs.

6. CONCLUSIONS AND FURTHER WORK

An SA course according to the needs of the industry

is essential in the study plans of systems engineering

and related programs; however, the undergraduate

students’ training, with the skills that the industry

demands, has many challenges. The discrepancy

between what is taught in universities and what the

software industry expects is a problem that is

evident through this study. Aligning software

architecture courses with industry requirements is

crucial for computer science, systems engineering,

and related programs curricula. However, imparting

the skills demanded by the industry to university

students poses numerous challenges. Knowing the

skills required by the industry is the first step to

creating courses that help the employability of

recent graduates. The identification of which

competencies can be incorporated with less effort

and greater efficiency makes it possible to draw a

route in which universities can begin that path

towards meeting the expectations of the software

industry.

Taking into account the related studies, we were

able to identify that there is no list of minimum

competencies in SA topics aligned with the needs of

the software industry, which subsequently allow

professors to characterize the needs and training

strategies of the role of software architect software

in undergraduate programs.

The first step to find an effective solution on how to

teach SA is to obtain the list of minimum

competencies to develop from the undergraduate

level. To obtain this list we have followed a series

of steps in a sequential and systematic manner

involving teachers and engineers from the industry.

We have managed to classify the SA competencies

into the categories: mandatory, optional and out of

scope for an undergraduate course. Taking into

account the related studies, we were able to identify

that there is no list of minimum competencies in SA

topics aligned with the needs of the software

industry, which subsequently allow teachers to

characterize the needs and training strategies of the

role of software architect. software in undergraduate

programs.

Furthermore, we have identified two clearly

differentiated groups of competencies. The first is

related to the development of a new system, and the

second, to the maintenance of a software system.

Clearly the competencies of the second group are

much more complex to develop from the academy.

It is more difficult for students to understand and

modify the architecture of an existing system than to

propose a new one from scratch. However, this

second group of skills is the most in demand by the

industry.

The mandatory competencies found in this research,

in the opinion of some professors, are difficult to

address in their entirety in undergraduate programs.

This indicates that the academy is not covering the

minimum skills that the industry demands of a

recent graduate.

These competencies found will be the basis of future

projects that allow finding training strategies that

allow designing SA courses according to the needs

of the software industry.

ISSN: 1692-7257 - Volume 1 – Number 43 - 2024

University of Pamplona
 I. I. D. T. A.

19

ACKNOWLEDGMENTS

We give special recognition to all the professors and

engineers who participated in the surveys, focus

groups, and workshops during this research.

REFERENCES

[1] S. Angelov and P. de Beer, “Designing and

Applying an Approach to Software

Architecting in Agile Projects in Education,”

Journal of Systems and Software, vol. 127, no.

C, pp. 78–90, 2017, doi:

10.1016/j.jss.2017.01.029.

[2] M. Galster and S. Angelov, “What makes

teaching software architecture difficult?,” in

Proceedings - International Conference on

Software Engineering, Austin Texas:

Association for Computing MachineryNew

YorkNYUnited States, 2016, pp. 356–359.

doi: 10.1145/2889160.2889187.

[3] IEEE, “IEEE 1471-2000 - IEEE

Recommended Practice for Architectural

Description for Software-Intensive Systems,”

2000. doi: 10.1109/IEEESTD.2000.91944.

[4] M. Richards and N. Ford, Fundamentals of

Software Architecture: An Engineering

Approach 1st Edicion. Canada: O’Reilly

Media, Inc., 2020. [Online]. Available:

https://www.amazon.com/Fundamentals-

Software-Architecture-Comprehensive-

Characteristics/dp/1492043451

[5] M. A. Shah, I. Ahmed, and M. Shafi, “Role of

Software Architect: A Pakistani Software

Industry Perspective,” Res J Recent Sci, vol. 3,

pp. 48–52, 2014.

[6] O. E. Lieh and Y. Irawan, “Teaching adult

learners on software architecture design

skills,” in Proceedings - Frontiers in

Education Conference, FIE, Uppsala, Sweden:

IEEE, 2019, pp. 1–9. doi:

10.1109/FIE.2018.8658714.

[7] A. Jansen and J. Bosch, “Software

Architecture as a Set of Architectural Design

Decisions,” in 5th Working IEEE/IFIP

Conference on Software Architecture

(WICSA’05), Pittsburgh, PA, USA: IEEE,

2005, pp. 109–120. doi:

10.1109/WICSA.2005.61.

[8] M. Fowler, “Who Needs an Architect?,” IEEE

Softw, vol. 20, no. 5, pp. 11–13, 2003, doi:

10.1109/MS.2003.1231144.

[9] R. C. De Boer and H. Van Vliet, “On the

similarity between requirements and

architecture,” Journal of Systems and

Software, vol. 82, no. 3, pp. 544–550, 2009,

doi: https://doi.org/10.1016/j.jss.2008.11.185.

[10] L. Bass, P. Clements, and R. Kazman,

Software architecture in practice, third

Edition. Massachusetts, USA: Pearson

Education, 2012. [Online]. Available:

https://www.amazon.com/Software-

Architecture-Practice-3rd-

Engineering/dp/0321815734

[11] A. E. Sabry, “Decision model for software

architectural tactics selection based on quality

attributes requirements,” Procedia Comput

Sci, vol. 65, pp. 422–431, 2015.

[12] L. Dobrica and E. Niemela, “A survey on

software architecture analysis methods,” IEEE

Transactions on Software Engineering, vol.

28, no. 7, pp. 638–653, 2002, doi:

10.1109/TSE.2002.1019479.

[13] N. B. Harrison and P. Avgeriou, “How do

architecture patterns and tactics interact? A

model and annotation,” Journal of Systems and

Software, vol. 83, no. 10, pp. 1735–1758,

2010.

[14] R. S. Pillutla and A. Alladi, “Methodology to

bridge the gaps between engineering education

and the industry requirements,” in Eurocon

2013, Zagreb, Croatia: IEEE, 2013, pp. 926–

932. doi: 10.1109/EUROCON.2013.6625093.

[15] P. M. Leidig and L. Cassel, “ACM Taskforce

efforts on computing competencies for

undergraduate data science curricula,” in

Proceedings of the 2020 ACM Conference on

Innovation and Technology in Computer

Science Education, 2020, pp. 519–520.

[16] E. Moreno Vélez, “Arquisoft90 Formación

profesional y capacitación,” 2020. Accessed:

May 31, 2020. [Online]. Available:

https://www.linkedin.com/showcase/arquisoft

90-entrenamiento-den-arquitectura-de-

software

[17] A. Van Deursen et al., “A Collaborative

approach to teaching software architecture,” in

Proceedings of the Conference on Integrating

Technology into Computer Science Education,

ITiCSE, in SIGCSE ’17. New York, NY, USA:

Association for Computing Machinery, 2017,

pp. 591–596. doi: 10.1145/3017680.3017737.

[18] V. Garousi, G. Giray, E. Tüzün, C. Catal, and

M. Felderer, “Closing the gap between

software engineering education and industrial

needs,” IEEE Softw, vol. 37, pp. 68–77, 2020,

doi: 10.1109/MS.2018.2880823.

[19] E. Lieh Ouh, B. Kok Siew Gan, and Y. Irawan,

“Did our Course Design on Software

Architecture meet our Student’s Learning

Expectations?,” in 2020 IEEE Frontiers in

ISSN: 1692-7257 - Volume 1 – Number 43 - 2024

University of Pamplona
 I. I. D. T. A.

20

Education Conference (FIE), Uppsala,

Sweden: IEEE, 2020, pp. 1–9. doi:

10.1109/FIE44824.2020.9274014.

[20] L. M. Barbosa Guerrero, “Arquitectura De

Software Como Eje Temático De

Investigación,” Ingeniería, pp. 78–85, 2006,

doi: 10.1109/MC.2015.268.

[21] T. Akhriza, Y. ma, and J. Li, “Revealing the

Gap Between Skills of Students and the

Evolving Skills Required by the Industry of

Information and Communication

Technology,” International Journal of

Software Engineering and Knowledge

Engineering, vol. 27, pp. 675–698, 2017, doi:

10.1142/S0218194017500255.

[22] M. A. Unigarro Gutiérrez, “Un modelo

educativo crítico con enfoque de

competencias,” 2017. [Online]. Available:

https://revistas.ucc.edu.co/index.php/dotr/artic

le/view/1833/1921

[23] A. Van Deursen et al., “A Collaborative

approach to teaching software architecture,” in

Proceedings of the Conference on Integrating

Technology into Computer Science Education,

ITiCSE, Seattle Washington USA: ACM,

2017, pp. 591–596. doi:

10.1145/3017680.3017737.

[24] A. Lopes, I. Steinmacher, and T. Conte, “UML

Acceptance: Analyzing the Students’

Perception of UML Diagrams,” in

Proceedings of the XXXIII Brazilian

Symposium on Software Engineering, in SBES

2019. New York, NY, USA: Association for

Computing Machinery, 2019, pp. 264–272.

doi: 10.1145/3350768.3352575.

[25] D. C. Schmidt and Z. McCormick, “Producing

and delivering a MOOC on pattern-oriented

software architecture for concurrent and

networked software,” in SPLASH 2013 -

Proceedings of the 2013 Companion

Publication for Conference on Systems,

Programming, and Applications: Software for

Humanity, Indianapolis Indiana USA: ACM,

2013, pp. 167–176. doi:

10.1145/2508075.2508465.

[26] P. Ciancarini, S. Russo, and V. Sabbatino, “A

Course on Software Architecture for Defense

Applications,” in Proceedings of 4th

International Conference in Software

Engineering for Defence Applications, P.

Ciancarini, A. Sillitti, G. Succi, and A.

Messina, Eds., Cham: Springer International

Publishing, 2016, pp. 321–330.

[27] M. Palacin-Silva, J. Khakurel, A. Happonen,

T. Hynninen, and J. Porras, “Infusing Design

Thinking into a Software Engineering

Capstone Course,” in 2017 IEEE 30th

Conference on Software Engineering

Education and Training (CSEE T), Savannah,

Georgia, USA: IEEE, 2017, pp. 212–221. doi:

10.1109/CSEET.2017.41.

[28] B. Wei, Y. Li, L. Deng, and N. Visalli,

“Teaching Distributed Software Architecture

by Building an Industrial Level E-Commerce

Application,” in Studies in Computational

Intelligence, vol. 845, Cham: Springer

International Publishing, 2020, pp. 43–54. doi:

10.1007/978-3-030-24344-9_3.

[29] C. R. Rupakheti and S. V Chenoweth,

“Teaching Software Architecture to

Undergraduate Students: An Experience

Report,” in Proceedings - International

Conference on Software Engineering,

Florence Italy: IEEE Press, 2015, pp. 445–454.

doi: 10.1109/ICSE.2015.177.

[30] J. Joy and V. G. Renumol, “Activity oriented

teaching strategy for software engineering

course: An experience report,” Journal of

Information Technology Education:

Innovations in Practice, vol. 17, pp. 181–200,

2018, doi: 10.28945/4116.

[31] Z. Li, “Using Public and Free Platform-as-a-

Service (PaaS) based Lightweight Projects for

Software Architecture Education,” in

Proceedings of the ACM/IEEE 42nd

International Conference on Software

Engineering: Software Engineering Education

and Training, Seoul South Korea: Association

for Computing Machinery, 2020, pp. 1–11.

doi: 10.1145/3377814.3381704.

[32] L. Zhang, Y. Li, and N. Ge, “Exploration on

theoretical and practical projects of software

architecture course,” in 15th International

Conference on Computer Science and

Education, ICCSE 2020, Delft, Netherlands:

IEEE, 2020, pp. 391–395. doi:

10.1109/ICCSE49874.2020.9201748.

[33] O. E. Lieh and Y. Irawan, “Exploring

Experiential Learning Model and Risk

Management Process for an Undergraduate

Software Architecture Course,” in 2018 IEEE

Frontiers in Education Conference (FIE), San

Jose, CA, USA: IEEE, 2018, pp. 1–9. doi:

10.1109/FIE.2018.8659200.

[34] F. G. Silva, P. E. D. Dos Santos, and C. von

Flach G. Chavez, “FLOSS in Software

Engineering Education: Supporting the

Instructor in the Quest for Providing Real

Experience for Students,” in Proceedings of

the XXXIII Brazilian Symposium on Software

Engineering, Salvador Brazil: ACM, 2019, pp.

234–243. doi: 10.1145/3422392.3422493.

ISSN: 1692-7257 - Volume 1 – Number 43 - 2024

University of Pamplona
 I. I. D. T. A.

21

[35] K. May, B. Yang, J. Zhou, Y. Lin, K. Zhang,

and Z. Yu, “Outcome-based school-enterprise

cooperative software engineering training,” in

ACM International Conference Proceeding

Series, Shanghai China: Association for

Computing MachineryNew YorkNYUnited

States, 2018, pp. 15–20. doi:

10.1145/3210713.3210722.

[36] S. Mohan, S. Chenoweth, and S. Bohner,

“Towards a Better Capstone Experience,” in

Proceedings of the 43rd ACM Technical

Symposium on Computer Science Education,

in SIGCSE ’12. New York, NY, USA:

Association for Computing Machinery, 2012,

pp. 111–116. doi: 10.1145/2157136.2157173.

[37] Z. S. H. Abad, M. Bano, and D. Zowghi, “How

Much Authenticity Can Be Achieved in

Software Engineering Project Based

Courses?,” in Proceedings of the 41st

International Conference on Software

Engineering: Software Engineering Education

and Training, in ICSE-SEET ’19. Montreal

Quebec Canada: IEEE Press, 2019, pp. 208–

219. doi: 10.1109/ICSE-SEET.2019.00030.

[38] M. Niño and R. Anaya, “Hacia un enfoque

basado en competencias para la enseñanza de

la ingeniería de software utilizando

investigación-acción,” in Encuentro

Internacional de Educación en Ingeniería

ACOFI, Cartagena de Indias, 21017. [Online].

Available:

https://acofipapers.org/index.php/eiei/article/v

iew/586

[39] A. W. Kiwelekar and H. S. Wankhede,

“Learning objectives for a course on software

architecture,” in European Conference on

Software Architecture, 2015, pp. 169–180.

[40] S. M. Putman and T. Rock, Action Research:

Using Strategic Inquiry to Improve Teaching

and Learning. SAGE Publications, 2016.

[Online]. Available:

https://books.google.com.co/books?id=AX1Z

DwAAQBAJ

ISSN: 1692-7257 - Volume 1 – Number 43 - 2024

University of Pamplona
 I. I. D. T. A.

22

ANNEXES

A. Competencies of software architects

according to the literature review

Table 6: Competencies of software architects according to the

literature review.

Id Description

Creation of an Architecture

C01 Clearly identifies the relevant software quality

attributes that will drive the architecture of a software
system to be constructed.

C02 Consistently design the software architecture by

defining how components interact with each other.
C03 Makes relevant design decisions about how a system

should be built involving the choices an architect faces

when designing a software system.
C04 It carefully expands the details of the design, refining

it to converge in the final design.

Analysis and Evaluation of an Architecture

C05 Independently evaluates a software architecture to
determine functional and non-functional requirements

satisfaction.

C06 Frequently reviews component designs proposed by
junior engineers verifying compliance with the

architecture.
C07 Systematically applies value-based architectural

techniques to evaluate architectural decisions.

C08 Impartially performs a trade-off analysis to evaluate
architectures.

Architectural Documentation

C09 Organized preparation of architectural documents and

presentations useful for stakeholders.

C10 Produces documentation standards that include

variability and dynamic behavior.

Trabajando con sistemas existentes

C11 Easily maintains existing systems and their
architecture to achieve the evolution of software

systems

C12 Redesigns existing architectures for migration to
recent technologies and platforms.

Other Competencies

C13 Proactively provides architectural guidelines for

software design activities.
C14 Enthusiastically leads architecture improvement

activities in a software development organization.

C15 Actively participates in defining and improving
software processes in an organization.

C16 Reflectively defines the philosophy and principles for

global architecture.
C17 Collaboratively provides architecture oversight

support for software development projects.

Requirements Management

C18 Critically analyzes functional and quality attribute

software requirements.

C19 Understands business and customer needs quickly to
ensure that requirements meet these needs.

C20 Systematically captures customer, organizational, and

business requirements in the architecture.
C21 Creates clear software specifications from business

requirements.

Source: Elaborated by the authors

Table 6: Competencies of software architects according to the

literature review.

Id Description

Product Implementation

C22 Periodically reviews the source code written by the

development team.
C23 Develops reusable software components.

C24 Develops solutions based on existing reusable

components.
C25 Ensures compliance with coding guidelines by the

development team.

C26 Recommends development methodologies for the
development team.

C27 Monitors the work of consultants and external
suppliers.

Product Testing

C28 Establishes test procedures considering architectural

aspects (types of components/services, integration).
C29 Builds the product by facilitating the identification and

correction of faults.

Evaluation of Future Technologies

C30 Explicitly evaluates enterprise software solutions and

makes recommendations.

C31 Carefully manages the introduction of new software

solutions in an organization.
C32 Objectively analyzes the current IT environment and

recommends solutions for the deficiencies found.

C33 Develops quality technical documents and presents
them to organizational stakeholders.

Selection of Tools and Technology

C34 Performs reliable technical feasibility studies of recent

technologies and architectures for the organization.
C35 Objectively evaluates commercial tools and software

components from an architectural perspective.

Source: Elaborated by the authors

B. Profile of the engineers who participated in the

workshop

Table 7: Profile of the engineers who participated in the workshop.

No Company Year

Exp.

Job Job functions

1 Inxeption 5 Full-stack Developer Development and evolution of web applications.
2 EPAM +10 Senior Software

Developer

Apply good development practices (SOLID

principles,

Clean Code, Clean Design, etc.) to new and/or
existing source code. Establish communication

strategies between different microservices and

implement DevOps strategies.
3 Amazon +10 Software Development

Engineer.

Microservices design and review in a software

development team.

ISSN: 1692-7257 - Volume 1 – Number 43 - 2024

University of Pamplona
 I. I. D. T. A.

23

4 Universida

d

Autónoma
de

Occidente -

Cali

+10 Software Arquitect Design of enterprise software solutions,

management of On-premises and

On-premises and Cloud services. Evaluation of
technology providers and control of the software

development outsourcing process.

Source: Elaborated by the authors

