
ISSN: 1692-7257 - Volume 1 – Number 43 - 2024

University of Pamplona
 I. I. D. T. A.

1

Model Driven Engineering tool aimed at the generation of

Smart Contracts for the Ethereum Blockchain platform.

Herramienta Model Driven Engineering destinada a la generación de

Contratos Inteligentes para la plataforma de Blockchain Ethereum

MSc. Edgar Dulce 1,2,3, PhD. Julio Hurtado 2, MSc. Eduard Mantilla 1, MSc.

Yenny Nuñez 1, PhD. José García-Alonso 3

1 Universidad Nacional Abierta y a Distancia UNAD, Grupo de investigación DAVINCI, Bogotá, Colombia.

2 Universidad del Cauca, Grupo de investigación IDIS, Popayán, Cauca, Colombia.
3 Universidad de Extremadura, Grupo de investigación QUERCUS, Cáceres, Extremadura, España.

Correspondence: edgar.dulce@unad.edu.co

Received: November 8, 2023. Accepted: January 10, 2024. Published: February 21, 2024.

How to Cite: E. R. Dulce Villarreal, J. A. Hurtado Alegría, E. A. Mantilla Torres, Y. S. Núñez Álvarez, and J. M. García Alonso, “Model

Driven Engineering tool aimed at the generation of Smart Contracts for the Ethereum Blockchain platform”, RCTA, vol. 1, no. 43, pp. 1–8,

Feb. 2024.

Recovered from https://ojs.unipamplona.edu.co/index.php/rcta/article/view/2778

Copyright 2024 Colombian Journal of Advanced Technologies.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Abstract: Blockchain technology is growing at a rapid pace in different environments.

Smart contracts (SC) are immutable decentralized programs for Blockchain platforms that

enforce, monitor and execute agreements, without the intervention of a trusted third party.

But, due to their specificities, their development is a complicated process, as there are

architectural concerns of each platform, which developers must understand. In this paper,

we present a Model Driven Engineering tool intended for the generation of SC for the

Ethereum Blockchain platform, for the Solidity programming language. This tool is

composed of a Platform Specific Metamodel and a Model to Text Transformation, which

allow generating the source code of the SCs. Also, we present a proof of concept where we

generate and implement a metamodel, a model and deploy SC in a healthcare environment.

The results are satisfactory in terms of the syntax of the generated SCs.

Keywords: Blockchain, Ethereum, MDE, Smart Contract, Solidity.

Resumen: La tecnología Blockchain está creciendo a un ritmo acelerado en diferentes

entornos. Los contratos inteligentes (SC) son programas descentralizados inmutables para

plataformas Blockchain que hacen cumplir, monitorear y ejecutar acuerdos, sin la

intervención de un tercero de confianza. Pero, debido a sus especificidades, su desarrollo

es un proceso complicado, ya que existen restricciones arquitectónicas de cada plataforma,

que los desarrolladores deben comprender. En este trabajo, presentamos una herramienta

Model Driven Engineering destinada a la generación de SC para la plataforma de

Blockchain Ethereum, para el lenguaje de programación Solidity. Esta herramienta está

compuesta de un Metamodelo Especifico de la Plataforma y una Transformación de

Modelo a Texto, que permiten generar el código fuente de los SC. También, presentamos

una prueba de concepto donde generamos e implementamos un metamodelo, un modelo y

desplegamos SC en un entorno sanitario. Los resultados son satisfactorios en cuanto a la

sintaxis de los SC generados.

Digital Object Identifier: 10.24054/rcta.v1i43.2778

https://ojs.unipamplona.edu.co/index.php/rcta/article/view/2778
https://creativecommons.org/licenses/by-nc/4.0/
https://orcid.org/0000-0003-1995-6718
https://orcid.org/0000-0002-2508-0962
https://orcid.org/0000-0003-0492-2136
https://orcid.org/0000-0002-6868-6278
https://orcid.org/0000-0002-6819-0299
https://creativecommons.org/licenses/by-nc/4.0/
https://ojs.unipamplona.edu.co/index.php/rcta/article/view/2778

ISSN: 1692-7257 - Volume 1 – Number 43 - 2024

University of Pamplona
 I. I. D. T. A.

2

Palabras clave: Blockchain, Contrato Inteligente, Ethereum, MDE, Solidity.

1. INTRODUCTION

Smart contracts (SCs) are immutable decentralized

programs deployed on Blockchain (BC) platforms

to enforce, monitor and execute agreements, without

the intervention of a trusted third party. An SC

allows inserting business logic into transactions and

sharing them in an interoperable way with other BC

[1]. The term SC was coined by lawyer and

computer scientist Nick Szabo in 1996 [1]. With the

use of robust cryptographic protocols, Szabo

recognized the possibility of writing software that

resembled contractual clauses, which would be

binding on the parties and reduce their chances of

non-compliance. While this was a novel idea in the

1990s, the technology needed for its proper

development was lacking. It was only in 2008 when

the development of BC technology provided the

necessary platform and ecosystem for SCs [2]. SCs

enable BC to play a vital role in many fields, such

as finance and healthcare.

Most SCs are simple programs that define a set of

rules governing the contractual agreement process

between the parties. Despite being simple, SC

development is challenging. This is due to the

complexity and heterogeneity of the underlying

platforms used to create and implement SCs [3].

In this paper, a detailed analysis of the official

Ethereum documentation [4]. Then applying the

Model Driven Engineering (MDE) methodology to

create a metamodel, a model according to this

metamodel and the necessary transformation to

generate the source code of the SCs. All of the

above, with some artifacts required in the Solidity

programming language1, which is the official

language for Ethereum2. Ethereum is currently one

of the most widely used BC platforms [5].

The rest of the paper is organized as follows: Section

2, provides an analysis of the presented problem.

Next, section 3 discusses the methodology. Next, in

Section 4 we present our platform-specific model

for SC generation for Ethereum BC platforms,

describe the entire MDE ecosystem required to

improve its interoperability, and describe the

metamodel generated for the Ethereum platform, for

1 https://docs.soliditylang.org/en/v0.8.21
2 https://ethereum.org/en

the Solidity programming language. We present a

model-to-text transformation (m2t), in section 5,

along with the program created in Acceleo3 that

performs the process. In section 6 we present a proof

of concept, in which we develop a SC for patient

management in a healthcare environment, in this

process, we show the implementation, compilation

and deployment of a SC. At the end of the paper, we

present Conclusions and References.

2. ANALYSIS OF THE PRESENTED

PROBLEM

What distinguishes an SC from a normal application

is that its code is implemented on a BC platform.

This close relationship between SC and BC

introduces architectural and platform-specific

constraints that developers must understand to

create SC applications [6]. In addition, the platform

heterogeneity that manifests itself in the multiple

BC platforms that a developer can target to

implement their code adds another layer of

complexity. Particularly, because these platforms

require different types of implementation models

and artifacts and do not follow specific standard or

unified terminologies to specify these models [7].

An important aspect of SC modeling and

implementation is to define the message exchange

process and the rules governing the agreements

under which the corresponding actions are executed

[7].

Also, as with most technologies, there are potential

security threats, vulnerabilities, and other issues

associated with SCs. Writing safe and secure SCs

can be extremely difficult due to various business

logics, as well as platform vulnerabilities and

limitations [8]. The problems encountered in SCs

are classified depending on the consensus

mechanism used, the quality of the contract source

code, lack of standard programming languages,

among others [9]. Moreover, one of the biggest

challenges in implementing a SC is how to unify the

contract execution environments and programming

language, since various BC systems may adopt

different execution platforms and scripting

languages of SCs [10]. By allowing Turing-

3 https://wiki.eclipse.org/Acceleo/

ISSN: 1692-7257 - Volume 1 – Number 43 - 2024

University of Pamplona
 I. I. D. T. A.

3

complete programming languages to implement

SCs, recent BC, such as Ethereum, can reduce the

needs for trusted intermediaries, arbitration, and

execution costs. However, subtle bugs in SCs have

led to huge economic losses, such as DAO attack4,

attacks on wallets with multiple parity signatures,

and integer overflow attacks [11].

In relation to the above, we can say that SCs are a

relatively new technology and are in a growth phase.

Thus, greater abstraction and automation are key to

mastering the complexity inherent in the process of

building SCs, and the models are intended to obtain

all the advantages that were once achieved with

programming languages: a reduction of the semantic

leap between the way in which developers think

about solutions and the way in which they must

express them, which results in less effort in the task

of programming and therefore in greater

productivity, more understandable programs and

less costly maintenance [12].

3. METHODOLOGY

The MDE methodology is composed of the

following principles [12]:

• A model represents totally or partially a part of a

software system;

• These models are represented with domain

specific languages (DSL) also called "modeling

languages";

• A metamodel is used to formally represent a

DSL;

• Automation is usually achieved through the

translation of models to code by model

transformations.

An increase in the level of abstraction must be

accompanied by an increase in the level of

automation to be truly effective. In the case of MDE

this is achieved by automatically generating code

from the models created, either directly through m2t

transformations, which is very complicated when

one does not have well-defined mature models, or

indirectly by defining intermediate models

generated with model-to-model (m2m)

transformations that facilitate the conversion of

high-level abstraction models into the final code

[13].

4 https://blog.chain.link/reentrancy-attacks-and-the-dao-hack

4. A PLATFORM SPECIFIC MODEL (PSM)

FOR SC GENERATION FOR ETHEREUM

BC PLATFORMS.

Considering the above and to relieve developers

from dealing with this platform-specific complexity

of BC platforms, and allow them to focus on the

business process, rather than the syntax details of

each BC platform, in this paper we start with one of

the important points of the whole set of tools needed

to achieve complete interoperability of the entire BC

ecosystem (Fig. 1). In the work we presented and

fully described in [6], we proposed a MDE

experiment based on a 4-level architecture [12],

which is summarized in Fig. 1. In this opportunity,

we developed a metamodel (MM-A in Fig. 1), from

which different PSMs can be created. Also, we

create an m2t transformation in the Acceleo tool,

which will be in charge of generating the source

code of a SC for the Solidity.

4.1 Analysis

In this section, we analyze and describe the

components present in Fig. 1.

At the core of our tool, there is a specific metamodel

for the Ethereum BC platform (Fig. 2). For its

construction, eCore was used as the metamodeling

language, which is part of the Eclipse Modeling

Framework EMF metamodeling architecture [14].

Fig. 1. Description of the MDE process for the proposed

experiment. Source: Based on the 4-level architecture [13].

ISSN: 1692-7257 - Volume 1 – Number 43 - 2024

University of Pamplona
 I. I. D. T. A.

4

For the construction of the metamodel, we followed

the interactive and iterative approach proposed in

[15], which allows the specification of model

fragments by domain experts.

These fragments can be annotated with descriptions

of the intent or requirements of particular elements.

A metamodel is automatically induced, which can

be interactively refactored and then compiled into an

implementation metamodel for different platforms

and purposes. In our case for the Ethereum BC

platform. Also, we have reviewed other

contributions to go adding the components present

in the metamodel, these are presented in section 6.

Fig. 2. SCED3 - eCore metamodel for Ethereum, for Solidity

programming language. Source: own elaboration.

Since our metamodel is platform-dependent (PSM),

it enables the creation of models to improve

interoperability between models that are generated

in different BCs. From a model we can generate a

SC with enough richness and it gives us the

possibility that this model can be used with other

models to form a more abstract infrastructure and

thus facilitate the interoperability of SCs coming

from different platforms.

All the code of a SC in Solidity is generated in a file

with the extension .sol. The main class of our

metamodel is SmartContract, from which the other

classes that represent the structure of a contract in

Solidity are derived.

The following is a description of each of the classes

of the proposed metamodel:

• Reposotory: is a superclass in which several SCs

are stored, as it is handled in other programming

languages, for example, Java.

• Constructor and Constructor Parameter:

Represents the constructor of the SC or owner of

the contract, together with the specific

parameters of this owner.

• User: Within an SC, there can be two other user

types (user and thirdparty), for other participants

and a third party, such as a notary. These are

handled by the TUsers enumeration.

• Primitive Type: Used for primitive types of the

language, handled by the PType enumeration.

Some examples are: string, int, money or bool.

• GVariable: To manage Global Variables, its

visibility is handled by the VisF enumeration, it

can be: public, private, internal and external.

• Asset: Represents the assets that can be managed

within a SC. It is represented by raw data that

persist inside a SC and are stored inside a BC.

This asset represents a value that can be tangible

or intangible and its value is updated through

Functions or Events.

• Mapping: It is a type of reference like arrays and

structs, it allows referencing two or more types

of data and managing them through a name.

• Event and Event Member: To manage events

occurring in the logic of an SC. When an event

is emitted, the arguments are stored in

transaction logs in the BC and are accessible

using the SC address.

• Struct: It is used to manage the construction of

data structures, which are composed of other

types of data (e.g., a patient type structure may

be composed of a patient's ID, Name and

Address).

• Instance Struct: It is used to instantiate structures

created with the Struct class.

• Function, Local Function and GlobalFunction:

Manages functions, which have the same

behavior as in other programming languages,

e.g., Java. In addition, they are used to create the

necessary setters and getters.

• Function Parameter and Return: Used to manage

the parameters of a function and the value it

returns respectively.

• Type: It is an abstract class used to represent in

class hierarchy the different types of data in

solidity.

5. MODEL TO TEXT TRANSFORMATION

(m2t) FOR SC ETHEREUM

As previously stated, by means of a set of

transformations we can go from a high level of

abstraction, to a very concrete level, in this case for

SC generation. In this paper, one of the objectives is

to create a m2t transformation, to generate the

source code of a SC for the Ethereum platform,

which is described below.

ISSN: 1692-7257 - Volume 1 – Number 43 - 2024

University of Pamplona
 I. I. D. T. A.

5

For the reason of not extending too much in the

explanation, in Fig. 3, an extract of the source code

of the generateSolidity.mtl file, created in Acceleo,

is presented. This file is intended to generate the SC

source code for the Ethereum platform, for the

Solidity programming language. The complete

source code can be found in the GitHub repository5.

As can be seen in Fig. 3, in line 2, we make use of

our SCED3 metamodel explained in the previous

section. In line 4, the main template is defined and a

variable called sc is created, with which we access

the main class of the SCED3 metamodel called

SmartContract, and with which we access other

elements of the metamodel.

In line 5, the file containing the SC is created. In this

case, accessing through the variable sc to the

parameter SCED3Name, which contains the name

of the contract. With the concat('.sol') function, the

extension .sol is concatenated to the file (remember

that .sol is the extension for solidity files). In line 8,

the version of solidity that we are going to use is

defined, this is obtained from the pragmaSolidity

parameter of the SmartContract class.

Fig. 3. GenerateSolidity.mtl program created in Acceleo, for the

m2t transformation.

Source: own elaboration.

In line 10, the word contract and its name indicate

the beginning of the SC. Lines 12, 16 and 20 contain

3 for cycles in charge of calling the functions

generateGlobalVariables, generateMappings and

generateEvents, in charge of generating Global

Variables, Mappings and Events of a contract.

5 https://github.com/edgardulce77/MDETool-

EthereumSoliditySC.git

6. VALIDATION THROUGH A PROOF OF

CONCEPT

This section describes the main steps and tools used

for the creation, implementation and deployment of

a SC.

6.1. Environment

As an environment for the creation, implementation

and validation of SCs, we will take the healthcare

environment, directly in the patient registration

process for a medical center that supports its

information systems using BC technology.

We will start from the assumption that each patient

has the following attributes:

• IDPatient: identification of the patient.

• namePatient: name of a patient.

• agePatient: age of a patient.

Then, to improve its administration, it is necessary

to have these attributes in a structure called patient.

Likewise, with the example contract, it will be

possible to perform functions such as: Register

patients and consult patients.

6.2. Tools used

The following tools are used for each phase of the

process:

• Metamodel and model construction: with the

eCore metamodeling language, included in

Eclipse Modelling Framework (EMF).

• Transformation m2t: Acceleo is used, which is a

code generator that implements the m2t

specification, supports functions of a high-

quality code generator IDE: simple syntax,

efficient code generation, advanced tools,

among others [12].

• Implementation of SCs: Remix, which is a web

IDE, is used to write, test and debug SCs in

Solidity.

6.3. Model creation

Having already created the metamodel described in

section 4, EMF gives us the possibility to create

instances of the metamodel (EMF calls them

dynamic instances), which will later be transformed

into the source code of an SC. These instances

ISSN: 1692-7257 - Volume 1 – Number 43 - 2024

University of Pamplona
 I. I. D. T. A.

6

follow the XMI standard (XML Metadata

Interchange or XML Metadata Interchange)6. In Fig.

3, a dynamic instance called "SmartContract" can be

seen, which conforms to the metamodel proposed in

Fig. 2, and which is described below:

For illustrative purposes, and to understand the

usefulness of the metamodel, we will summarize the

creation of some elements:

1. SmartContract Patient Management: This is the

base element of the metamodel and from which

the other elements are derived. It is composed of

the SC name and the Solidity version, on which

the SC will be compiled. The 5 elements shown

in Fig. 4 are derived from it. Global Function

ConsultPatients: It is a global function that will

allow querying a given patient by its ID. Within

this function a parameter has been defined

called.

2. PrimitiveType: These are primitive data types, in

this case they are: NamePatient, String type,

IDPatient string type and agePatient int type.

• Struct Patient: It is a data structure to manage

patients within the SC, it is composed of three

Struct Members, one for each of the parameters

of the structure: PatientName (string), PatientID

(string) and PatientAge (int).

3. GVariable: these are the global variables used to

identify the patients.

4. Event: manages events within a BC, such as the

registration of a patient.

5. Mapping: Mapping that relates the ID and name

of a patient.

Fig. 4. Model created based on the metamodel presented in Fig.

2. Source: own elaboration.

6 http://www.omg.org/spec/XMI/

6.4. Smart contracts generated

Now, having in mind the metamodel of Fig. 2 and

the model of Fig. 4, with the help of the program

generateSolidity.mtl created in Acceleo (Fig. 3), we

run the m2t transformation, to generate the source

code of the contract called GestionPacientes.sol. In

Fig. 5, a part of the generated source code can be

seen.

In Fig. 5, which is described below, several of the

elements represented in the model of Fig. 3 can be

seen:

• In line 2, the version of Solidity, in this case

version 0.8.2, is seen.

• In line 4, the start of the SC called

GestionPacientes.

• Between lines 5 to 7, 3 global variables

IDPatient, namePatient and agePatient are

created.

• In line 9, mapping called MPatiente, which

relates two string fields.

• In line 11, an example of an event called

executeFunction, which requires a string

parameter.

• Between lines 13 to 17, a struct called Patient is

created, with the fields of each of the patients.

• In line 19, the struct Patient is instantiated.

• Between lines 21 to 24, you can see the function

ConsultPatients, its type and the parameter it

returns (IDPatient).

Fig. 5. Source code of the GestionPacientes.sol contract.

Source: own elaboration.

ISSN: 1692-7257 - Volume 1 – Number 43 - 2024

University of Pamplona
 I. I. D. T. A.

7

6.5. Validation of the generated contracts

The implementation of the generated contract was

carried out using the Remix tool, dedicated to the

development, compilation, deployment and testing

of SCs programmed in Solidity. In Fig. 6, the results

of this process can be seen.

Some results of the deployment are explained

below:

• The check mark icon, tells us that the

deployment was done correctly, in the same line

the SC name is identified.

• Status: indicates that the contract was

successfully mined and executed.

• Transaction Hash: is the hash of the transaction,

to check its value.

• Block Hash: is the hash of the block in which the

transaction was executed.

• Contract Address: is the 32-byte address of the

SC.

• To: refers to the contract name, in this case

GestionPacientes.

• Gas: is the cost of deploying the SC in the

network.

• Transaction cost: is the cost of the transaction to

deploy the contract.

• Execution cost: SC execution cost.

Fig. 6. Results of the deployment of the SC

GestionPacientes.sol. Source: own elaboration.

6.6. Analysis of Implementation Results

The deployment of the contract was satisfactory.

The results indicate that our metamodel is able to

generate many of the elements required in SCs for

Ethereum BC platforms, preserving the syntax of

the solidity programming language. Although in this

study we only present the results with a proof of

concept, to show that our metamodel is able to

generate SC, and on these generate valid elements

and artifacts, some additional evaluations are still

missing, such as: evaluation of the quality of our

metamodel and generated models, either by experts

in the area or using some methodologies, such as

MQuaRE tool, exposed by [17], which offers a set

of artifacts to perform the evaluation of metamodels

and also of the generated source code.

7. CONCLUSIONS

This paper presents a tool built following the MDE

methodology for the generation of Smart Contracts

on the Ethereum BC platform, for the Solidity

programming language. This tool is composed of a

metamodel, which is an abstraction of the main

elements of the Solidity language, that allows

modeling the main artifacts of the language and thus

generating smart contracts. Likewise, the tool

presents a Model-to-Text transformation (m2t) for

the generation of the source code of the smart

contracts, which was built in the Acceleo tool. Also,

a proof of concept was performed regarding patient

management in a healthcare environment, in which

a model was created according to the metamodel

presented and by means of the m2t transformation,

the source code of the contract for patient

registration and consultation was generated. In this

test, the contract was implemented, deployed and

compiled in a controlled environment, in which the

satisfactory results are shown. However, in the

whole process described, further studies and

validations are needed to confirm the effectiveness

and efficiency of the tool in other contexts, as well

as to perform constant monitoring of the metamodel

to ensure its relevance and adequacy to new

demands and update of the Ethereum platform.

ACKNOWLEDGEMENT

We are deeply grateful to the DAVINCI, IDIS and

QUERCUS research groups for all their support and

accompaniment throughout the research process.

REFERENCES

[1] B. Aldughayfiq and S. Sampalli, “Digital Health

in Physicians’ and Pharmacists’ Office: A

Comparative Study of e-Prescription Systems’

Architecture and Digital Security in Eight

Countries,” OMICS, vol. 25, no. 2, pp. 102–122,

2021, doi: 10.1089/omi.2020.0085.

[2] S. Nakamoto, “Bitcoin: A peer-to-peer

electronic cash system,” Decentralized Business

Review, p. 21260, 2008.

ISSN: 1692-7257 - Volume 1 – Number 43 - 2024

University of Pamplona
 I. I. D. T. A.

8

[3] W. Zou et al., “Smart contract development:

Challenges and opportunities,” ITSE, vol. 47, no.

10, pp. 2084–2106, 2019.

[4] P. Wackerow, “Documentación De Desarrollo

De Ethereum,” Aug. 2022.

[5] G. A. Oliva, et al., “An exploratory study of

smart contracts in the Ethereum blockchain

platform,” ESE, vol. 25, no. 3, pp. 1864–1904, 2020,

doi: 10.1007/s10664-019-09796-5.

[6] E. R. D. Villarreal, et al., “Blockchain for

Healthcare Management Systems: A Survey on

Interoperability and Security,” IEEE Access, vol.

11, pp. 5629–5652, Jan. 2023, doi:

10.1109/ACCESS.2023.3236505.

[7] M. Hamdaqa, et al., “IcontractML: A domain-

specific language for modeling and deploying smart

contracts onto multiple blockchain platforms,”,

SAM 2020, 2020, pp. 34–44. doi:

10.1145/3419804.3421454.

[8] I. Qasse, et al., “IContractBot: A Chatbot for

Smart Contracts’ Specification and Code

Generation,”, BotSE 2021, 2021, pp. 35–38. doi:

10.1109/BotSE52550.2021.00015.

[9] D. Macrinici, et al., “Smart contract applications

within blockchain technology: A systematic

mapping study,” TIS, vol. 35, no. 8, pp. 2337–2354,

2018, doi: 10.1016/j.tele.2018.10.004.

[10] H. Jin, X, et al. “Towards a novel architecture

for enabling interoperability amongst multiple

blockchains,”, ICDCS, 2018, pp. 1203–1211.

[11] W. Nam and H. Kil, “Formal Verification of

Blockchain Smart Contracts via ATL Model

Checking,” IEEE Access, vol. PP, p. 1, Aug. 2022,

doi: 10.1109/ACCESS.2022.3143145.

[12] M. Brambilla, et al., Model-Driven Software

Engineering in Practice: 2E, Milán, 2017.

[13] J. García, et al., “Desarrollo de Software

Dirigido por Modelos Conceptos, Métodos y

Herramientas”, Madrid, 2013.

[14] F. Budinsky, Eclipse modeling framework: a

developer’s guide. AWP, 2004.

[15] N. Sanchez, et al., (05, 2022) Blockchain smart

contract meta-modeling. Disponible:

https://digital.cic.gba.gob.ar/handle/11746/11403.

[16] M. Hamdaqa, et al., “iContractML 2.0: A

domain-specific language for modeling and

deploying smart contracts onto multiple blockchain

platforms,” IST, vol. 144, p. 106762, Apr. 2022, doi:

10.1016/J.INFSOF.2021.106762.

[17] G. C. Velasco, et al., “Evaluation of a High-

Level Metamodel for Developing Smart Contracts

on the Ethereum Virtual Machine,” in AWB, 2023,

pp. 29–42.

https://digital.cic.gba.gob.ar/handle/11746/11403

