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Abstract: This study aims to implement deep neural networks (DNNs) to assess the
sensitivity level of design parameters in flexible pavements for roads with low traffic
volume. One hundred eight structures were modeled using the Pitra Pave® software
(i.e., multilayer elastic theory (MET) model for pavement structural analysis) to generate a
database to develop the DNN models. The DNN models, through connection weights,
allowed the comparison with MET to evaluate the sensitivity of the selected design
variables (resilient modulus and layer thickness) on the structural design parameters. The
results suggest the significant impact of layer thicknesses. In addition, the predictions of
structural design parameters from these initial DNN models showed variations ranging
from 0,03% to 10,87% compared to MET. Expanding the database and developing a multi-
predictive network is recommended for future research.

Keywords: Deep neural network, sensitivity analysis, multilayer elastic theory, flexible
pavements

Resumen: El objetivo de este estudio es implementar redes neuronales profundas (RNPS)
para evaluar la sensibilidad de parametros de disefio en pavimentos flexibles de carreteras
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con bajo volumen de trafico. Ciento ocho estructuras fueron modeladas utilizando el
programa Pitra Pave® (modelo de teoria elastica multicapa (TEM) para andlisis estructural
de pavimentos) para generar la base de datos requerida para desarrollar las RNPs. Estas
redes, a través de pesos de conexidn, permitieron la comparacion con TEM para evaluar la
sensibilidad de las variables de disefio (mddulo resiliente y espesor de capa) sobre los
parametros de disefio estructural. Los resultados sugieren el impacto significativo de los
espesores de capa. Adicionalmente, las predicciones de los parametros de disefio estructural
obtenidos mediante las RNPs variaron entre 0,03% y 10,87% respecto a TEM. Para futuras
investigaciones, se sugiere ampliar la base de datos y desarrollar una red multi-predictiva.

Palabras clave: Red neuronal profunda, analisis de sensibilidad, teoria elastica multicapa,

pavimentos flexibles.

1. INTRODUCTION

Low-volume traffic roads (LVTR) in Colombia are
encompassed within the national classification as
tertiary roads. These roads connect populated
centers and rural areas (INVIAS, 2008). As of 2017,
different entities estimated 142,000 km of LVTR in
the country. For the same period, it was reported that
only 6% were in good condition, while the
remaining 94% of LVTR nationwide predominantly
exhibited regular, poor, and bad conditions (Ariza &
Romero, 2017). These figures are a consequence,
among other factors, of the lack of implementation
of new technologies, particularly in the construction
and maintenance phases (Caro & Caicedo, 2017).
Nevertheless, pavement structural design is a
fundamental pillar in developing new roads, and
recent advancements in this area can significantly
benefit the planning and construction of these roads.

Theories for flexible pavement structural design
currently include several approaches, from
empirical to mechanistic (or rational) methods
considering materials' visco-elastoplastic non-linear
behavior (Pereira & Pais, 2017). In addition,
mechanistic methods based on multilayered elastic
theory (MET) quantify the pavement structural
response in terms of deformations and stresses on
the principle that each material exhibits linear elastic
behavior.

Furthermore, traditional mechanistic methods for
flexible pavement design rely on controlling two
response parameters: the horizontal tensile strain at
the bottom of the asphalt concrete and vertical
compression strain at the subgrade surface (Coria
Gutiérrez et al., 2018), which are, respectively,
associated with bottom-up fatigue cracking in the
asphalt concrete and subgrade rutting (i.e., plastic
deformation). The structural response of flexible
pavements can also be evaluated based on another
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widely studied design criterion: surface deflection
(Massenlli & Paiva, 2019).

Computational ~ programs  have  supported
mechanistic design approaches since the 1960s.
These software include Bisar®, Kenpave®,
Elsym5®, Pitra Pave®, and EVERSTRESS, among
others. Furthermore, over the years, the software has
been developed to model pavement structures using
the finite element method, which enables the
solution of constitutive equations for assessing
stresses and strains (Ronddn Quintana & Reyes
Lizcano, 2007).

On the other hand, with the evolution of
computational systems, artificial intelligence has
become one of the main drivers in transforming
research approaches across various fields of
knowledge. In civil engineering, significant
enhancements in accuracy, efficiency, and cost-
effectiveness have been reported at different stages
of projects. Specifically, in pavement engineering,
various approaches have been considered, ranging
from machine learning to deep learning
(Gopalakrishnan, 2018); the latter includes neural
networks that offer robust prediction tools and
streamline various processes (Yang et al., 2021).

This study seeks to assess the level of sensitivity of
design variables on the structural design parameters
of flexible pavements for LVTR based on a deep
neural network (DNN) for each structural design
parameter. The predictor DNN models were
constructed using synthetically generated data from
the Pitra Pave® software (Loria-Salazar et al.,
2017), which models flexible pavement structures
based on the multilayer elastic theory (MET). The
variables assessed in this study correspond to the
primary structural design parameters evaluated in
mechanistic design methods (Corté & Goux, 1996).
These are horizontal tensile strain at the bottom of
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the asphalt concrete layer (<), vertical compressive
strain at the surface of the subgrade (&), and surface
deflection (A;). However, besides assessing the
structural design parameters, the MET model
allowed computing the deflection (vertical
deformation), vertical strain, and horizontal strain at
different depths. These data permitted additional
refinement for the development of the DNN models.

These DNN models allowed for assessing the
significance of the design variables (resilient
modulus and layer thickness of each structural
layer), determined by the connection weights
between neurons, acquired during the learning
process. Ultimately, these connection weights were
compared with an assessment of the sensitivity level
conducted using data from 108 simulations (16200
data) using the MET model (i.e., Pitra Pave®
software), enabling the determination of the
influence of design variables on typical pavement
structural design parameters. The DNN models can
help to determine structural design parameters for
multiple pavement structures for LVTR in analysis
conducted at the road network level. The options for
these structures are constrained by the ranges
established for the design variables evaluated.

2. METHODOLOGY

The working scheme applied in this research is
outlined in Fig. 1. It primarily stemmed from the
selection of 108 flexible pavement structures,
resulting from a parameterization of the resilient
modulus (RM) and layer thickness (LT) for each of
the structural layers that comprised a typical flexible
pavement structure. Next, a modeling stage was
carried out using the Pitra Pave® software, which
provided the necessary data for assessing the
sensitivity level and developing the DNN models.
Subsequently, validations were performed by
directly comparing the outputs gathered from the
DNN models and MET models. Afterward, an
evaluation was conducted on the differences
observed in the various pavement structures for each
structural design parameter to determine the
significance of the design variables. Finally, the
DNN models yielded the connection weights per
design variable needed to compare the level of
importance of each of these parameterized
variables.
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Fig. 1. Methodology applied for conducting the
study.

2.1. Design parameters

The typical flexible pavement structure adopted is
shown in Fig. 2, including the subgrade (SG) and
three structural layers: asphalt concrete (AC),
granular base (GB), and granular sub-base (GSB).
The design parameters that differentiated each
pavement structure were the thickness of AC
(LTAc), the thickness of GB (LTgg), the thickness of
GSB (LTesg), the resilient modulus (stiffness) of
AC (RMac), the resilient modulus of GB (RMgg),
and the resilient modulus of GSB (RMgsg). By
varying the thicknesses, it was possible to establish
four geometric configurations (C1l, C2, C3, C4;
Table 1), while for the moduli, the values indicated
in Table 1 were adopted. These values generated
different combinations, defining the 108 simulated
structures. Additionally, the Poisson’s ratio (v) and
resilient modulus of the subgrade (RMsg), tire load
(P), contact pressure between the tire and the
pavement (o), radius of the load area (r), and tire
spacing (y) remained constant. Table 2 presents the
values adopted for these parameters.

RMac,LTac, Uac

D e

RMs,LTcB, VDer

1 RMscs, LTscs, Uscs

® (Az) l(s) <« (€2)
Fig. 2. Reference structural model.
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Table 1. Range of variation in resilient modulus
and layer thickness.

Resilient modulus Layer thickness [m]
[MPa] Cl Cc2 C3 C4

AC 3500 - 2500 -1500 | 0,10 0,07 005 0,03
GB 250 - 200 - 150 025 020 015 0,10
SGB 200 - 150 - 100 025 020 015 0,10
SG 80 - - -

Note. The Pitra Pave® software assumes the
subgrade layer thickness (LTsg) to be infinite.

Table 2. Constants adopted in the pavement
structural models.

Parameter Value
VAC 0,30
Ves, Vses, and Vsg 0,35
RMsg [MPa] 80,00

r [m] 0,108

y [m] 0,324

P [kN] 20,50

o [kPa] 562,00

2.2. Deep Neural Network (DNN) models

By modeling pavement structures using the Pitra
Pave® software, it was possible to evaluate the
structural design parameters at the position
corresponding to the midpoint under the tire imprint.
This effort resulted in a dataset of 16200 entries,
which was the foundation for constructing an initial
predictor DNN model for each pavement structural
design parameter.

The architectures of each proposed DNN were
developed using a subset of the database obtained
from modeling pavement structures with Pitra
Pave®. The synthetic database was randomly
divided into three subsets necessary for developing
each DNN (Table 3). The architecture of each DNN
model was trained using the adaptive moment
estimation—Adam—optimizer (Kingma & Ba,
2014) with default parameters, except for the
learning rate, which was varied and decreased by a
factor of 0,8 when performance stabilized. The early
stopping regularization technique was implemented
to prevent overfitting by monitoring the loss on the
validation test, and a 5-fold stratified approach was
used to evaluate the model's performance and
generalization capability.

For hyperparameter tuning, this study explored
various combinations of the number of hidden
layers, the number of neurons, and the activation
functions. The selected architectures achieved the
highest performance on the test set. The metrics
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used to evaluate the DNN models were the
coefficient of determination (R?) and the root mean
square error (RMSE). Fig. 3 presents the general
scheme of the DNN architectures used, and Table 4
summarizes the number of neurons selected in the
architectures of each DNN model. All hidden layers
in the three DNN models used the rectified linear
units—ReLU—activation function.

© Structural !
design
)\ parameter !

N: number of neurons
Fig. 3. Reference architecture of DNN models.

Table 3. Proportions of data subsets used for each

DNN model.
Training Test Validation
A; DNN 70 30 20
& DNN 70 30 20
g, DNN 85 15 10

Table 4. Number of neurons implemented for each

DNN model.
Hidden layer 1 Hidden layer 2
A; DNN 180
& DNN 100 120
g, DNN 60 180

3. RESULTS AND DISCUSSION

The results of the study included the analysis of
accuracy and empirical validation of the DNN
models, variation of the structural design parameters
due to the change in the design variables, the
sensitivity level of the design variables to the
structural design parameters, and significance level
of design variables determined from the DNN
models.

3.1. Accuracy and empirical validation of the
DNN models
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Table 5 presents the values obtained for the R? and
RMSE metrics, compared to results found in the
literature. These metrics demonstrated the accuracy
achieved on test data, i.e., not used in the training
phase. Overall, these values support the proper
performance of the proposed DNN models in
estimating and generalizing structural design
parameters. Differences compared to the Pitra
Pave® (MET) outputs are subsequently discussed.

Table 5. Performance metrics of the DNN models.

Model R? RSME
Proposed 0,998+ 0,0029+
0,002 0,006
A, DNN
Karballaeezadeh et al., 0.841 076
2020 ! !
0,996 + 1,09E-5 +
Proposed 0,027 0.016
&DNN Dlati et al.. 201 096+ 0043+
(Plati et al., 2016) 0,003 0,0001
Proposed 0,988+ 4,24E-5
& DNN ) _ 0,006 +0,0066
? (Ghanizadeh & Ahadi, 0.99
2015) :

In addition, a direct comparison was made between
the predictions of the DNN model and the results
from the Pitra Pave® software for the three
structural design parameters evaluated. Fig. 4
displays the outcomes for these criteria, indicating
that the DNN models' predictions followed the
trends of the MET model. The prediction results for
Az (Fig. 4A) from both models exhibited smaller
than 5% differences.

A)

0.58 RMGB = 250 MPa
T 056 RMGB = 200 MPa
£ T RMGB = 150 MPa
= 0.54 A Pitra Pave
_§ 0.52 O A, DNN
S
g 05
S
L o4 %
Y 046
o
T 044
Y
2 0.42
[y

0.4

1500 1750 2000 2250 2500 2750 3000 3250
Resilient modulus AC [MPa]

4.506-04 RMGB = 250 MPa
RMGB = 200 MPa
‘§ 4.00E-04 o RMGB = 150 MPa
E N ° A Pitra Pave
" o
2 350604 4 o O & own
2 P o
i \ . o
§ 300604 ) = . X °
S o a I ~B=— 0
N g ~q 2
;§ 2.50E-04 ——g o :
2.00€-04 +

1500 1750 2000 2250 2500 2750 3000 3250
Resilient modulus AC [MPa]
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Fig. 4. Influence of resilient modulus of asphalt
concrete and granular base on structural design
parameters: A) surface deflection, B) horizontal

strain at the bottom of the asphalt concrete, and C)

vertical strain at the top of the subgrade.

The corresponding results for ¢, estimation (Fig. 4B)
showed maximum differences ranging from 0,04 to
5,07%, a promising outcome for this initial DNN
model, suggesting the potential for further
refinement to minimize the reported discrepancies.
Fig. 4C presents the DNN predicted values for ¢,
showing a percentage difference ranging from
0,66% to 5,50%. These discrepancies indicated that
the DNN model also provided a promising initial
prediction for this design parameter.

3.2. Variation of the structural design
parameters due to the change in the design
variables

Assessment of the sensitivity level for each
structural design parameter required defining a
reference pavement structural model, from which
the differences generated by the variation of RM and
LT were calculated. The selected reference
pavement structural model is depicted in Fig. 2, and
it was characterized by RMac=3250 MPa,
RMee=250 MPa, RMsce=200 MPa, and RMss=80
MPa, along with layer thicknesses defined for
geometry C1 (LTca=0,10 m; LTee=0,25 m;
LTSGB:O,ZS m).

Thus, an initial assessment of the sensitivity level
was conducted, considering the variation of RMgs
(ranging from 150 MPa to 250 MPa) and RMac
(ranging from 1500 MPa to 3250 MPa). The results
for & and ¢, were determined at the central point of
the circular load imprint and are recorded in Table 6.

Table 6. Results of structural design parameters
associated with variations in RMgg and RMca.

RMac RMecs
[MPa]  [MPa] & &
3250* 250% 2,28E-04 1,85E-04
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200 2,54E-04 1,92E-04
150 2,87E-04 2,00E-04
250* 2,54E-04 1,91E-04
2500 200 2,86E-04 1,99E-04
150 3,28E-04 2,07E-04
250* 3,03E-04 2,01E-04
1500 200 3,50E-04 2,09E-04
150 4,14E-04 2,19E-04

* Reference model values.

Fig. 5 shows the values of Az as a function of RMac.
The figure presents three possible mechanical
responses, each defined by a variation in RMgg for
different pavement structures. Generally, and as
expected at the theoretical level, an inversely
proportional trend between layer stiffness and
surface deflection is observed.

RMACc [MPa]
I o T S Do Do S G Do P
<250 56 5 "%, "5 T30, Ty T, < g,
04 t t t t t t t t |
4,21E-01
0,42
0,44
0,46 +
—
1
§_, 0,48 ) )
g 0,50727,-7 0,505 -~
05 T P .
o o
2 4 .
0,5. e

0,54 + 0,554
. RMas = 250 MPa

............. RMeas = 200 MPa
— ' " =~ RMas =150 MPa

0,56 +

0,58 -
Fig. 5. Surface deflection as a function of RMac
and different values of RMgg.

Table 7 presents the percentage differences for each
design criterion evaluated after modifying the
values of RMgg and RMac. Similarly, Table 8
includes the differences found when varying the
values of RMsgs and RMac. Quantification of these
differences was based on comparison with the
reference pavement structure. The differences
reported in Tables 7 and 8 reflect the inverse
proportionality in the structural design parameters
with the variations applied to RMgg and RMscg.

Table 7. Variation of structural design parameters
after changing RMgg and RMac.

RMac RMecs

[MPa] [MPa] A4; [%] &r[%] &[%]
250% 0,00 000 000

. 200 5.94 1140 378
3250 150 1449 2588 841
250% 0,00 000 000

2500 200 6.39 1260 419
150 1530 2913 838
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250% 0,00 000 000
200 6,51 1551 398
1500 150 1639 3663 896

* Reference model values.

Table 8. Variation of structural design parameters
after changing RMscs and RMac.

RMac  RMscs

0, 0, 0,

[M Pa] [MPa] Az [A)] &r [/0] &z [/0]
200~ 000 000 000

150 430 175 15,68

8250" 150 11,05 439 4216
200~ 000 000 000

150 427 157 1518

200 950 1102 304 4241
200~ 000 000 000

150 420 100 1590

1500 150 1080 260 4330

* Reference model values.

Table 9 presents the percentage differences in the
design parameters—calculated from the comparison
with the responses of the reference pavement
structure—generated when modifying the LTiotal
and RMac. These values reflected a high influence
of the variation in layer thicknesses corresponding
to the geometric configurations presented in
Table 1. An inversely proportional trend is observed
for the structural design parameters Az and er.

Table 9. Variation of structural design parameters
with changes in LTt and RMac.

[RM'VF',‘;C] "[T];"]‘a' LT %] %]
060~ 000 000 000
047 2098 2237 5081
3250% 035 4552 3289 13297
023 8368 746 32054
060 000 000 000
047 2007 1890 4921
2500 035 4350 2362 130,37
023 7927 1220 31414
060~ 000 000 _ 000
047 1814 1089 47,76
1500 035 3914 396 126,87
023 7023 4455 30597

* Reference model values.

However, there wasn't a consistent trend in ¢, for the
geometric configurations assessed. The values of
this design parameter calculated for LTt=0,60 m,
LTwow=0,47 m, and LTww=0,35 m showed a
decreasing trend with increasing RMac and LTiotal.
However, an increasing trend was evidenced for the
structure with LTw=0,23 m. This response was
because when the thickness of the AC layer was on
the order of 3cm and its resilient modulus
decreased, stresses tended to increase due to the lack
of load distribution capacity.
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3.3. Sensitivity level of the design variables to
the structural design parameters

By assessing the sensitivity level of the design
variables on the structural design parameters
analyzed in flexible pavement structures, their level
of sensitivity could be evaluated, classified, and
organized from highest to lowest influence
concerning the calculated percentage differences.
The maximum variations obtained for each
structural design parameter were organized,
showing the level of impact concerning each studied
design variable. Table 10 presents the maximum
variations of the design variables analyzed in terms
of the structural design parameters (Az, &, and ).

Table 10. Maximum variations of the design
variables for each structural design parameter.

Variable 4, [%] &r [%] &z [%]
LT otal 83,68 44,55 320,54
RMgs 16,39 36,72 9,05
RMac 13,06 32,70 8,45
RMsgs 11,05 4,39 43,28

Sandoval-Higuera (2006) presented a scale for
percent variations to classify the results obtained
and listed above. This sensitivity scale is shown in
Table 11. Table 12 presents the degree of sensitivity
of the design variables evaluated. According to
these results, the sensitivity assessment for the three
structural design parameters suggests that the most
influential variable was L Tiotal.

Table 11. Definition scale of sensitivity level.

Sensitivity level Variation [%]

Low <15
Medium 15-30
High >30

Table 12. Sensitivity level of design variables on
structural design parameters.

Variable Az &r &
LTiotal High High High
RMac Low High Low
RMgg Medium High Low
RMscs Low Low High

3.4. Significance level of design variables
determined from the DNN models

The significance level of design variables computed
using the DNN models was assessed in terms of the
connection weights. These weights were parameters
that the DNN adjusted in the training process,
determining the contribution of each neuron
associated with each input variable. The
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determination and calculation of these weights
followed the approach proposed by Ghanizadeh et
al., 2020. The analysis for each structural design
parameter involved determining the connection
weights for each hidden layer and associating the
sum of these weights with each input variable
(design variable).

Table 13 presents the connection weights between
neurons for the different design variables
concerning the evaluated structural design
parameters. It is worth noting that for the training of
the DNN models, each of the initially characterized
layer thicknesses in each structural layer was treated
independently. This approach allowed for the
measurement of influence through the connection
weights for each layer thickness, whereas for the
analysis performed by the MET model, the total
layer thickness (LTwtw) conceptualized in each
initially defined geometric configuration was
considered.

Table 13. Connection weights of design variables
determined from the DNN models.

Variable 4z DNN & DNN & DNN
LTac 13,78 8,24 6,09
LTes 8,29 9,07 6,39
LTses 9,24 8,47 7,72
RMac 11,53 6,44 7,27
RMegs 12,78 7,85 6,07
RMscs 12,70 8,54 4,56

The results from both models (DNN and MET)
showed some variations in the sensitivity level of
the design variables for each structural design
parameter. However, in both cases, it was
consistently found that layer thicknesses were the
most significant variables.

4. CONCLUSIONS

The development of this study enabled the creation
of DNN models, in evolution, for predicting typical
structural design parameters of flexible pavements
designed for LVTR. These DNN models allowed for
assessing the sensitivity level of the structural
design parameters concerning changes in design
variables (i.e., stiffness and layer thicknesses).

The developed Deep Learning models achieved
satisfactory metrics of R? and RSME, suggesting
their capability for prediction and generalization
regarding structural design parameters (i.e., surface
deflection, horizontal tensile strain at the bottom of
the AC, and vertical strain due to compression at the
surface of the SG).
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The numerical estimates computed by the MET and
DNN models enabled the determination of the
sensitivity level of each design variable in the
flexible pavements assessed for LVTR. The
outcome was consistent, comparing the MET model
results and the connection weights from the DDN
models; i.e., layer thicknesses exert the greatest
influence on each evaluated structural design
parameter for the pavement structures characterized.
However, the DNN models were able to determine
a more detailed breakdown of this sensitivity level
in terms of thickness for each structural layer.

For future work, exploring a more significant
number of simulations is suggested to allow for a
more robust generalization of the DNN models and
thereby improve the metrics. In addition, it is
essential to assess other analysis points besides the
midpoint under the tire imprint (e.g., the middle
point between the circular tire imprints), which can
also lead to critical values of the structural design
parameters. Lastly, validation of DNN models
prediction for the vertical and horizontal strains and
deflections throughout the depth of the pavement
structures is of interest to enhance the optimal
generalization for each variable in developing a
multi-predictor DNN model.
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