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Resumen: Este trabajo presenta un método de disminución de ruido en imágenes 

digitales, basado en un enfoque Bayesiano de dos etapas con ajuste empírico. Se estiman 

los coeficientes de una transformada wavelet de la imagen donde se ha reducido el ruido, 

utilizando una estimación lineal con un criterio de minimización del error cuadrático 

medio. Estos coeficientes constituyen una estimación deseable de la varianza de los 

coeficientes wavelet de la imagen libre de ruido.  

 

Palabras clave: Disminución de ruido en imágenes digitales, Transformada wavelet, 

Filtrado de Wiener. 

 

Abstract: This paper presents an image denoising method based on a two-step empirical 

Bayes approach. A linear minimum mean squared error-like estimation is performed to 

estimate the wavelet coefficients of the denoised image. These coefficients rely on a 

suitable estimation of the variance of the wavelet coefficients for the “clean” image.  

 

Keywords: Digital image denoising, Wavelet transform, Wiener filtering. 

 

 

1. INTRODUCTION 

 

The quality of the noise reduction in images relies 

on the goodness of the models involved. This is 

particularly true when dealing with real world 

images. Though image denoising and image 

compression are two different fields, one can take 

advantage of some known models primarily 

defined in the context of image compression and 

reoriented them through image denoising. These 

models recognize the existence of significant 

spatial dependencies using data structures such as 

zerotrees (Shapiro, 1993). The Embedded Zerotree 

Wavelet (EZW) algorithm generates a binary chain 

progressively ordered based on the relative 

importance of bits (embedded chain). This 

technique takes advantage of the existing 

correlation between wavelet coefficients of 

different subbands. Thus, given a coefficient c[k1/2, 

k2/2]j+1, irrelevant in magnitude at scale j+1, it is 
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highly probable that the coefficient c[k1, k2] j at 

scale j is also irrelevant. In this way, coefficients 

conveying the most information are given a higher 

priority during compression. In the EZW algorithm 

a coefficient is irrelevant when it is lower than a 

predetermined threshold T. This translates 

analytically into the conditional probability: 
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Thus, the EZW algorithm after wavelet 

transforming the image and with (1), represent the 

image coefficients by a tree structure where each 

root corresponds to a father wavelet coefficient 

c[k1/2, k2/2]j+1 and its four descendant branches 

c[k1, k2]j, as illustrated in Fig. 1. 

 
Fig. 1. The relations between wavelet coefficients 

in different subbands and associated tree structure. 

 

The analysis must verify that no descendant 

element can be analyzed before its father. This 

restriction ensures that in the multiresolution 

structure associated, the low frequency subbands 

are being completely scanned before the higher 

ones can be processed. The scan order starts with 

the lowest frequency band LLN, it continues to 

HLN, LHN, HHN, then the coefficients at level N-1 

are considered, and so on. Thus, we can deduce 

that the high performance of the zerotree-based 

image coders leads to the development of similar 

methods for image denoising. In (Chang et al., 

2000; Arivazhagan et al., 2011) an image adaptive 

model was used to perform image denoising via 

wavelet thresholding using context modeling of the 

global coefficient histogram. A different approach 

has been proposed in (Mihcak et al., 1999a) which 

exploits the local structure of wavelet image 

coefficients. As a different approach, in this paper 

a mixed criterion is considered: a local structure of 

wavelet image coefficients is exploited to estimate 

the variance of the wavelet coefficient of a “clean” 

image. This estimation is performed only in 

positions corresponding to father and descendant 

coefficients greater than an empirically established 

threshold T. 

2. STATISTICAL MODELING OF WAVELET 

COEFFICIENTS 

 

Many compression algorithms are based on the 

Discrete Wavelet Transform (DWT) as it 

concentrates most information in very few 

coefficients. Moreover, as explained in the 

previous section, the relationship between 

coefficients of different subbands can be exploited. 

Wavelet coefficients within subbands can be 

modeled as independent identically distributed 

(i.i.d.) random variables with a generalized 

Gaussian distribution (Mallat, 1989). This 

characteristic is the base of many compression and 

noise reduction algorithms. More sophisticated and 

perhaps less complex algorithms can be reached 

when considering the spatial interdependence 

between coefficients. In noise reduction problem, it 

has been observed that better results can be 

achieved when considering spatial interrelation or 

adaptability between coefficients. This is 

particularly true with real world images. 

 

2.1. Minimum mean squared error estimator for 

the “clean” image 

In each scale, the wavelet coefficients show a 

behavior based on a zero mean Gaussian 

distribution. Considering that the wavelet 

transform used is orthogonal, then the DWT of a 

noisy image g[x1, x2], corrupted with an additive 

white Gaussian noise, can be described in the 

wavelet domain by, 

     212121 ,,, kkckkckkc nfg   (2) 

 

Where gc , fc  and nc  are, respectively, the 

wavelet coefficients of the noisy image g[x1, x2], 

the coefficients of the noiseless or “clean” image 

f[x1, x2], and the coefficients of the noise image 

n[x1, x2]. Since the addition of two independent 

Gaussian random variables generates another 

Gaussian random variable with variance equal to 

the sum of the variances: 

222

nfg ccc    (3) 

 

As 2

gc can be evaluated and assuming that 2

nc  can 

be estimated (see section 3), then 2

fc is obtained 

by: 
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 (4) 

 

Applying the minimum mean-squared error 

estimation theory to the wavelet coefficients of the 

noisy image, it is possible to obtain an 

approximation of each coefficient fĉ  using the 

following equation. 
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It should be noted that (4) uses the entire wavelet 

domain resulting in lost in local information 

leading to poor value of the variance of the wavelet 

coefficient for f and subsequently poor estimates of 

its wavelet coefficients. Hence, to overcome the 

limitations introduced by (4), the proposed 

approach uses equation (5) where the maximum 

likelihood criterium estimates 
2ˆ

fc , of the 

underlying variance field, and then are substituted 

for 2

fc . 

 

2.2. Maximum likelihood estimator for the 

underlying variance field 
2ˆ

fc  

New models for image wavelet coefficients has 

been introduced in (Mihcak et al., 1999a; 

Arivazhagan et al., 2011), inspired by a 

compression method previously published in (Lo 

Presto et al., 1997). These models assume the 

existence of an unknown smooth space-variant 

variance field. Under these assumptions the 

wavelet coefficients can be modeled as 

independent random variables locally identically 

distributed. This suggests a high correlation 

between variances of adjacent coefficients. 

Considering a square neighborhood window Wmxm 

centered at coefficient cg[k1, k2], the variance can 

be written as 
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where the neighborhood dimension m is a small 

odd integer number so that cg [k1, k2] is at the 

center of the window and the locally i.i.d. 

assumption holds. Under the assumption of a 

variance field, a maximum likelihood estimator can 

be applied to compute the local variances of the 

coefficients of f. Based on (4) the ML variance 

estimator for the “clean” image using the 

neighborhood window Wmxm is given by, 
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The choice of equation (7) over more sophisticated 

solutions (Mihcak et al., 1999b; Jaiswal and 

Upadhyay, 2015) results from experimental 

observations. Experiments conducted with more 

accurate but more computationally demanding 

estimators for  21
2 ,ˆ kk

fc  and 
2

nc  have shown to 

have little effect on the noise reduction process. 

Hence, the proposed simpler solution (7) is 

retained. 

 

 

3. ESTIMATION OF THE VARIANCE OF 

THE NOISY WAVELET COEFFICIENTS 
 

The literature usually assumes that the variance of 

the noise wavelet coefficients 
2

nc  is an unknown 

parameter. However in practice it can be estimated, 

and it has been proven for a noise image n(x1, x2) 

that its corresponding wavelet coefficients cn(k1, k2) 

possess a zero mean Gaussian distribution, thus 

maintaining the validity of the developments 

presented in previous sections. 

 

Moreover in many applications, the variance of the 

wavelet coefficients of the noise image n(x1, x2) 

within the finest scale is very close to that of the 

noisy image g(x1, x2) at the same scale. Hence, a 

good estimate value for 
2

nc  can be found from: 

 

1 scaleat 22  j
gn cc   (8) 

 

Thus, the estimation considers only coefficients at 

the first level of the decomposition, in subbands 

LH1, HL1 and HH1.  

 

 

4. ALGORITHM INTEGRATION 

 

The noise reduction algorithm proposed in this 

paper firstly decompose the image into pyramid 

subbands at different scales; secondly denoise each 
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subband, except for the lowpass residual band and 

finally invert the pyramid transform. More details 

are summarized below: 

 

(i) A discrete wavelet transform is developed with 

L levels. Considering that L=2 is sufficient to 

distinguish noisy coefficients from important 

information, experimentations have been 

conducted with biorthogonal wavelets, 

symlets, coiflets and Daubechies’s wavelets. 

However, only the most representative results 

achieved with the coiflet5 wavelet are 

presented here. 

(ii) A zero matrix Dj for each subband in each 

scale is defined. Dimensions of this matrix 

must be the same as the corresponding 

subband. 

(iii) The wavelet coefficients of the approximation 

band are compared with an empirically chosen 

threshold T. 

(iv) Estimate the variance 
2ˆ

fc for only the fathers 

and descendants coefficients greater than T. 

An appropriate value for the threshold T must 

be chosen depending on the noise level and the 

wavelet used in the decomposition. Each 

estimated variance is associated to the 

corresponding element of matrix Dj. Thus, the 

matrix Dj contains all the necessary 
2ˆ

fc  

values for the computation of the wavelet 

coefficients fĉ  in step (v). 

(v) With equation (5), the wavelet coefficients are 

computed for the denoised image and 

subsequently used to reconstruct the denoised 

image by the inverse DWT. 

 

 

5. RESULTS 

 

Experimentation with reference images is 

necessary to evaluate the performance of the 

algorithm. Four different images f, frequently used 

in the literature Lena, Barbara, Woman Dark-Hair 

and Woman Blonde have been used in this work. 

Our experiments are carried out on a personal 

computer running Microsoft Windows 10 OS© 64 

bits with an Intel© Core i5-6600 processor (@3.3 

GHz) and 16 GB RAM memory while the 

denoising procedure was implemented on Matlab© 

version R2016b. A noise image is simulated with 

Gaussian noise, zero mean and variance n, and 

added to the original image to produce the noisy 

image g.  

 

Figures 2, 6, 10 and 14 display the original images. 

The noisy images with Gaussian noise, zero mean 

and standard deviation n = 10, in a scale from 0 to 

255, are displayed in Figures 3, 7, 11 and 15. 

Comparative results of Lena, Barbara, Woman 

Dark-Hair and Woman Blonde are presented in 

Tables I, II, III and IV respectively. The image 

visual quality distortion is measured using the 

following well known indices (Jaiswal et al., 

2014): Peak Signal to Noise Ratio (PSNR), 

Structural Similarity Index (SSIM) (Wang et al., 

2004) and Quality Index Based on Local Variance 

(QILV) (Aja et al., 2006).  

 

Also for comparison purposes the denoising 

Wiener function of Matlab© is used. Our method 

(OM) is tested with three different window sizes: 

OM[3x3], OM[5x5] and OM[7x7]; different noise 

standard deviation and the coiflet5 wavelet in the 

decomposition with a threshold T=0.07. Figures 4 

and 5 provide a visual comparison of Lena, Figures 

8 and 9 of Barbara, Figures 12 and 13 of Woman 

Dark-Hair as well as Figures 16 and 17 of Woman 

Blonde. 

 

Table I. Lena 

 

n = 10 n = 15 n = 20 

 PSNR (dB) PSNR (dB) PSNR (dB) 

WITHOUT 

FILTER 

28.18 24.67 22.17 

WIENER 33.6 31.18 29.04 

OM[3x3] 34.09 31.54 29.46 

OM[5x5] 34.4 32.11 30.3 

OM[7x7] 34.42 32.21 30.5 

  

MSSIM 

 

MSSIM 

 

MSSIM 

WITHOUT 

FILTER 

0.6151 0.4523 0.3444 

WIENER 0.8611 0.7856 0.6941 

OM[3x3] 0.8733 0.7973 0.7156 

OM[5x5] 0.8851 0.8284 0.7634 

OM[7x7] 0.8861 0.8337 0.778 

  

QILV 

 

QILV 

 

QILV 

WITHOUT 

FILTER 

0.7738 0.5047 0.2996 

WIENER 0.952 0.947 0.9107 

OM[3x3] 0.9712 0.9496 0.9153 

OM[5x5] 0.9596 0.939 0.9145 

OM[7x7] 0.9559 0.93 0.8995 
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Table II. Barbara 

 

n = 10 n = 15 n = 20 

 PSNR (dB) PSNR (dB) PSNR (dB) 

WITHOUT 

FILTER 

28.16 24.66 22.2 

WIENER 29.89 28.34 26.9 

OM[3x3] 31.68 30.1 28.54 

OM[5x5] 31.52 30.01 28.63 

OM[7x7] 31.29 29.85 28.55 

 MSSIM MSSIM MSSIM 

WITHOUT 

FILTER 

0.7154 0.5792 0.4793 

WIENER 0.8501 0.7969 0.7348 

OM[3x3] 0.8905 0.8552 0.8051 

OM[5x5] 0.888 0.8536 0.8134 

OM[7x7] 0.8841 0.8497 0.8122 

 QILV QILV QILV 

WITHOUT 

FILTER 

0.9374 0.8142 0.6451 

WIENER 0.7746 0.7567 0.7445 

OM[3x3] 0.9331 0.9169 0.8918 

OM[5x5] 0.9255 0.9044 0.873 

OM[7x7] 0.9181 0.8933 0.8682 

 

Table III. Woman Dark-Hair 

 

n = 10 n = 15 n = 20 

 PSNR (dB) PSNR (dB) PSNR (dB) 

WITHOUT

FILTER 

28.21 24.68 22.24 

WIENER 35.61 32.36 29.84 

OM[3x3] 35.51 32.61 30.44 

OM[5x5] 36.38 33.65 31.66 

OM[7x7] 36.62 34.05 32 

 MSSIM MSSIM MSSIM 

WITHOUT 

FILTER 

0.5276 0.3524 0.2486 

WIENER 0.8745 0.7716 0.659 

OM[3x3] 0.8676 0.7789 0.69 

OM[5x5] 0.8959 0.8261 0.7563 

OM[7x7] 0.903 0.8439 0.78 

 QILV QILV QILV 

WITHOUT 

FILTER 

0.3717 0.1378 0.0493 

WIENER 0.9671 0.8489 0.6248 

OM[3x3] 0.9617 0.8603 0.6995 

OM[5x5] 0.9674 0.931 0.852 

OM[7x7] 0.9628 0.9314 0.8791 

 

 

Table IV. Woman Blonde 

 

n = 10 n = 15 n = 20 

 PSNR (dB) PSNR (dB) PSNR (dB) 

WITHOUTF

ILTER 

28.18 24.67 22.18 

WIENER 32.04 30.11 28.3 

OM[3x3] 32.56 30.55 28.77 

OM[5x5] 32.39 30.67 29.17 

OM[7x7] 32.24 30.57 29.15 

 MSSIM MSSIM MSSIM 

WITHOUT 

FILTER 

0.648 0.4837 0.3724 

WIENER 0.8256 0.759 0.6802 

OM[3x3] 0.8491 0.7864 0.7124 

OM[5x5] 0.8449 0.7973 0.7428 

OM[7x7] 0.8424 0.7974 0.7437 

 QILV QILV QILV 

WITHOUT 

FILTER 

0.8528 0.6293 0.413 

WIENER 0.9128 0.9125 0.9042 

OM[3x3] 0.9302 0.9105 0.895 

OM[5x5] 0.9036 0.8713 0.8389 

OM[7x7] 0.8889 0.85 0.81 

 

 
Fig. 2. Original image Lena 
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Fig. 3. Noisy image with Gaussian noise, zero 

mean and standard deviation n=10, PSNR 

(dB)=28.18 

 
Fig. 4. Denoising result with Wiener, and with 

Gaussian noise, zero mean and standard 

deviationn =10, PSNR (dB)=33.6 

 

 
Fig. 5. Denoising result with OM 7x7, T=0.07, 

with Gaussian noise, zero mean and standard 

deviation n =10, PSNR (dB)=34.42, 

MSSIM=0.8861, QILV=0.9559 

 
Fig. 6. Original image Barbara 

 



           ISSN: 1692-7257 - Volumen 2 – Número 30 - 2017 
 

 

 
Universidad de Pamplona 
       I. I. D. T. A.  

52 

       Revista Colombiana de 
Tecnologías de Avanzada 

 
Fig. 7. Noisy image with Gaussian noise, zero 

mean and standard deviation n=10, PSNR 

(dB)=28.16 

 
Fig. 8. Denoising result with Wiener, with 

Gaussian noise, zero mean and standard deviation 

n =10, PSNR (dB)=29.89 

 

 
Fig. 9. Denoising result with OM 7x7, T=0.07, 

with Gaussian noise, zero mean and standard 

deviation n =10, PSNR (dB)=31.29, 

MSSIM=0.8841, QILV=0.9181 

 
Fig. 10. Original image Woman Dark-Hair 
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Fig. 11. Noisy image with Gaussian noise, zero 

mean and standard deviation n=10, PSNR 

(dB)=28.21 

 
Fig. 12. Denoising result with Wiener, with 

Gaussian noise, zero mean and standard deviation 

n =10, PSNR (dB)=35.61 

 

 
Fig. 13. Denoising result with OM 7x7, T=0.07, 

with Gaussian noise, zero mean and standard 

deviation n =10, PSNR (dB)=36.62, 

MSSIM=0.903, QILV=0.9628 

 
Fig. 14. Original image Woman Blonde 
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Fig. 15. Noisy image with Gaussian noise, zero 

mean and standard deviation n=10, PSNR 

(dB)=28.18 

 

 
Fig. 16. Denoising result with Wiener, with 

Gaussian noise, zero mean and standard deviation 

n =10, PSNR (dB)=32.04 

 

 
Fig. 17. Denoising result with OM 7x7, T=0.07, 

with Gaussian noise, zero mean and standard 

deviation n =10, PSNR (dB)=32.28, 

MSSIM=0.8424, QILV=0.8889 

 

 
6. CONCLUSIONS 

 

We have presented a denoising method based on a 

two-step empirical Bayes approach in the wavelet 

domain with the characteristic that the estimation 

of the variance of the coefficients for the “clean” 

image is performed only at locations corresponding 

to father and descendant wavelet coefficients 

greater than an empirically established threshold T. 

Compared with the Wiener filtering procedure our 

method (OM) preserves better the high frequency 

information content in images, see for instance the 

hair of women, the dress of Barbara and 

tablecloth. Also in uniform regions our method has 

a good performance, see for instance the cheeks 

and lips of women. Then our method has a good 

balance between denoising textured and uniform 

regions. The results show the correctness of this 

criterion. 
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