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Resumen: Los avances en la ingeniería moderna han permitido la consolidación de 

sistemas computacionales para el diseño óptimo de máquinas, con un proceso que se 

especifica en la búsqueda de estándares propios del producto a diseñar, a partir de 

consideraciones funcionales, estéticas y de desempeño, así como también, restricciones 

dimensionales en cuanto a costos, operaciones de manufactura, sustentabilidad y calidad. 

En el presente artículo se expone el desarrollo de una herramienta computacional 

modular, escalable, libre, de fácil mantenimiento e interactiva que soporta la metodología 

Sustainable Mechanical Design Tool (SMEDT) para el diseño de máquinas de diferente 

tipo, a partir del uso de dos técnicas de optimización estocástica: Optimización por 

Enjambre de Partículas (PSO) y Algoritmos Genéticos (GA). El caso de estudio se 

caracteriza por el diseño de una bomba de pistones axiales con desplazamiento fijo 

basado en tres parámetros de entrada (rango de presión de operación, rango de velocidad 

de operación y capacidad volumétrica). Para lograr el diseño sostenible, se hace uso de la 

metodología y herramienta computacional SMEDT, mediante dos etapas de optimización: 

la primera enfocada en minimizar el tamaño de la bomba; y la segunda en maximizar la 

eficiencia volumétrica y disminuir el ruido. Se analizan el algoritmo de optimización y 

parámetros de entrada para determinar su influencia en el diseño final. 

 

Palabras clave: Bomba de Pistones Axiales de Desplazamiento Fijo, PSO, GA, 

Herramienta Computacional, Optimización Multi-objetivo, Simulación. 

 

Abstract: Modern engineering advances have allowed to consolidate computational 

systems for the optimum design of machinery based on complex models that consider not 

only matching the industrial standards, but also to achieve functional, aesthetical design 

for manufacturing, quality and sustainability specifications. In this article, it is exposed 

the development of a free and an interactive modular computer-optimized design tool, 

SMEDT (Sustainable Mechanical Design Tool), created to support the sustainable 

mechanical design methodology for computer tools, an authors’ proposed strategy that 

allows to design a diverse and broad group of machinery based on two optimization 

stochastic techniques: Particle Swarm Optimization (PSO) and Genetic Algorithms (GA). 

The case study proposed for validating the aforementioned tool was the design of a fixed 
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displacement swash plate axial piston pump using three input parameters (operation 

pressure range, operation velocity range and volumetric capacity). To achieve a 

sustainable design, the methodology for SMEDT and the tool were used, through a two 

optimization steps: the first one focused on minimizing the sizes of the pump; and then, 

using the output of the first step, this final stage focus on maximizing the performance 

(increasing efficiency vs decreasing noise) counting for the dynamic response of the 

pump. 

 

Keywords: Fixed Displacement Swash Plate Axial Piston Pump, PSO, GA, 

Computational Framework, Multi-objective Optimization, Simulation. 

 

 

 

1. INTRODUCTION 

 

A machine’s socioeconomic footprint and 

environmental impact during its life cycle are 

primarily due to the operational phase. Each year, 

the food and drink, automotive, and energy 

industries acquire and/or produce more machines 

to satisfy the demands of a growing population. 

Since acquisitions will keep growing and 

Greenhouse Gasses Emissions caused by those 

machines will cumulate in the atmosphere, global 

warming consequences will grow exponentially.  

 

 
 

Fig. 1. Mechanical Design Traditional Approach. 

Adapted from [1] 

 

The relationship between a machine’s performance 

and its design is well established. Therefore, in 

order to decrease their impact, we must begin to 

design machines in a sustainable way. This means 

that the design process must simultaneously satisfy 

various objectives: energy efficiency, safety and 

reliability, economic competitiveness, and low 

pollution levels. Some authors [1], [2] have shown 

that the classical design approach (Figure 1) is 

unsuitable to achieve a sustainable design because 

it is expensive in terms of time and money, inhibits 

innovative solutions, and does not guarantee that 

an optimal design will ultimately be chosen. These 

authors also proposed a computational approach 

that is able to successfully choose the discrete 

decision variables (materials, bearings, and 

predesigned elements) and the continuous decision 

variables (shapes and geometry) in more realistic 

and complex models using the Genetic Algorithms 

(GA) optimization method. 

 

However, studies like the one described above are 

scarce, inflexible, and limited. Most are only 

capable of designing a specific machine type. 

Besides, the optimization and simulation methods 

are unchangeable. Other studies demonstrate an 

incomplete automation of the process. Finally, few 

are easily adaptable to new production techniques. 

 

To solve those problems, in this work we proposed: 

(1) creating a modular computational framework to 

support the sustainable design decision-making 

process (materials selection, dimensions, and 

geometry). This framework allows for the complete 

optimization of the design of any machine over a 

given operating range, (2) validating the behavior 

of this framework in the design of a fixed 

displacement swash plate axial piston pump using a 

complex model (Table 1) and comparing the results 

with the literature, and (3) analyzing the outcome 

of the GA and PSO optimization methods on the 

final design. 

 
Table 1: Complexity of the Fixed Displacement 

Swash Plate Axial Piston Pump Design 

Description Value 

Num. Differential Equations 10 

Num. Model variables >100 

Num. Independent Variables >35 

Constraints Yes 
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Fig. 2. SMEDT software architecture 
 

 

2. COMPUTATIONAL FRAMEWORK 

SMEDT 

 

The Sustainable Mechanical Design Tool 

(SMEDT) is a modular, scalable, easily-

maintainable, and interactive C++ computational 

framework. The tool (Figure 2) is composed of 

three macro modules, called the model, optimizer, 

and simulator modules, which are interlinked using 

functors. The framework has an interface for the 

input of parameters - which are the same 

parameters specified to choose a machine from a 

catalogue – and for the output of results. 

 

2.1 Optimizer module 

 

This is the module that contains the optimization 

algorithm. Two optimizers were proposed, PSO 

and GA, since they easily adapt to computational 

models and have a high efficiency in solving multi-

objective engineering problems. The mechanical 

design process was stated as a mathematical 

optimization problem, minimizing the objective 

function , as follows: 

 

 

(1) 

Subject to: 

 

 
 

(2) 

 
 

(3) 

Where  is a vector that contains  decision 

variables, and   and    are the th and 

th of  equality constraints and  inequality 

constraints, respectively. For the handling of 

constraints, a penalty function method was used. 

This allows us to convert a constrained problem to 

an unconstrained problem with a penalized 

objective function , as shown in equation (4): 

 
With  being the penalization factor. 

 

2.1.1 Particle swarm optimization – PSO 

 

 
Fig. 3. PSO Algorithm 
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PSO [3] is a bio-algorithm inspired by flocks of 

birds. In principle, for each  instant, each swarm 

particle  moves around an -dimensional search-

space, finding the problem optimal solution. These 

movements are guided by velocity , which 

updates depending on the best known local position 

, and the best known global position 

. Figure (3) summarizes the PSO algorithm. 

 

Table 2: PSO Coeffiecients 

Coefficient Value Coefficient Value 

 

2.05 
 

0.40 

 

2.05 
 

1.40 

 

0.73   

 

To improve the algorithm’s performance, this 

version of the PSO safely initializes position  

starting in a feasible region. Also, two 

modifications to the standard velocity update  

were used (Table 2): inertia weight  [4] and 

constriction coefficient [5].These amendments 

guarantee PSO convergence and avoid the use of 

maximal velocity. A dynamic  was chosen to 

balance exploitation and exploration: in the first 

iterations, it facilitates exploration ( ), while 

in the last iterations, it facilitates exploitation 

( ). This behavior is shown in equation (7). 

For instance, for the  particle: 

 

                              (5) 

 

(6) 

 

(7) 

 

Where , and  are the cognitive and collective 

coefficients respectively,  and  are the 

end points of the interval for which   is defined, 

 is the maximal number of iterations allowed, 

and  is the number of iterations at the  

cycle. The coefficient selection was made 

according to the literature [4]–[6]. For the position 

update , equation (8) was used:  

 

 

(8) 

 

Once the position update is completed, a new 

particle  is computed and  and 

 are updated. This cycle continues until the 

maximal allowed number of iterations is reached or 

until the convergence criterion is met. 

 

2.1.2 Genetic Algorithms – GA 

 

GA [7] is a bio-algorithm based on genetics and 

evolution. GA initializes a random population of S 

chromosomes in a binary solution of length L. 

Each iteration-generation, the chromosomes cross 

over and mutate. However, each binary number 

must be converted to a decimal x_10 to obtain an x 

array of continuous and measurable numbers 

(decoding), by equation (9).  

 

 

(9) 

 

Each generation, some chromosomes ( ) are 

selected to breed a new generation and others are 

discarded ( ). This selection is based on a 

fitness score process, where each individual has a 

, to be selected. This value is 

proportional to the  that is achieved 

by performing a normalization process using the 

fitness of the fittest discarded chromosome 

( . In this case, the selection method 

used was the roulette wheel method. 

 

 

(10) 

 

(11) 

 

GA has two basic operators: crossover (a 

convergence operation) and mutation (a divergence 

operation). Crossover is intended to pull the 

offspring and only depends on the parents’ 

information and on the number of crossover points. 

In this case, we used a one-point crossover, the 

mutation operator, on the other hand, avoids the 

convergence of the individuals to a local optima, 

randomly modifying a percentage  of bits in each 

generation, so that the total number of mutations is 

given by equation (12):  

 

 

(12) 

2.2 Simulator 

 

The simulator module is an ordinary differential 

equation module based on the 4th-Order Runge 

Kutta Method [8,9], which simulates a machine’s 

dynamic response without building prototypes. It 

can be replaced by Dormand Prince or another 

suitable numerical solution method. 
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2.3 Machine model: Swash plate axial piston 

pump 

 

The machine model module contains the equations 

that represent the desired machine to be designed, 

in this case, a fixed displacement swash plate axial 

piston pump. It was built based on several studies 

[1], [10–22] and the modifications made by the 

authors of this paper. 

 

The optimal design must: minimize the pump 

volume, maximize efficiency, and minimize two 

types of noise: structure-borne noise (SBN) and 

fluid-borne noise (FBN). To achieve this goal, the 

model was split into two parts. 

2.3.1 Machine module: Pump optimization first 

Stage model 

The machine module uses the stated equations to 

yield the dimensions for the pump rotating group, 

which is comprised of the drive shaft piston, 

cylinder block, swash plate and port plate. Piston 

diameter is found by analyzing the barrel critical 

section [15]. Contiguous chamber pressure forces 

are calculated as shown in Figure (4). 

 
 

Fig. 4. Barrel Main Forces and Dimensions. 

Adapted from [15] 

 

 

(13) 

Then, it is possible to find the cylinder block 

representative radius using equations (14, 15, and 

16).  

 
(14) 

 (15) 

 (16) 

 

Where  are the exterior, interior, and 

piston pitch radiuses of the barrel.  

 

Thereafter, the shaft minimum diameter is 

computed using the Goodman line equation, which 

requires a predetermined safety factor, NSF, and a 

material maximum resistance factor. Figure (5) 

shows an analysis of the shear and bending 

moments. 

 

(17) 

 

 
Fig. 5. Shear and Bending Moments 

 

Subsequently, a piston force assessment is 

performed using a free body diagram (Figure 6). 

The piston main force is the radial force that is 

exerted upon the piston head. It can be computed 

using equation (18).  

 

 

(18) 

 

Once the piston maximum stress is 

computed, a penalization evaluation process can be 

conducted based on the restrictions. The following 

equations (19, 20, 21, and 22) are 4 of 12 

restrictions proposed due to the subparts’ assembly 

geometry and their material resistance.  

 

 
(19) 

 (20) 

 (21) 

 (22) 
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Fig. 6. Piston Main Forces. Adapted from [15] 

 

Finally, the objective function is evaluated 

(equation 23) and a penalized fitness is calculated 

(equation 24). This result includes the barrel 

volume minimization (since it is proportional to 

that of the pump) and the swash plate angle 

maximization. 

 

 
 

(23) 

 

(24) 

 

2.3.2. Machine module: Pump optimization 

second stage model  

The second stage model is based on the equations 

for port plate design. The model includes the 

pump’s dynamic response: its pressure profile, 

moments profile, and forces profile. It also 

accounts for compressibility and density changes 

depending on the piston chamber’s and discharge 

chamber’s pressures and temperatures (assumed 

constant for optimum design). In this stage, the 

objectives are to minimize flow leakages , and 

to minimize  and .  

 

Piston position, stroke, velocity, and acceleration 

are given by equations (25, 26, 27, and 28), 

respectively. 

 

 (25) 

 (26) 

 (27) 

 (28) 

  

To compute piston chamber pressure, the 

differential equation (30) is used. It considers 

pressure as constant in the space domain but not in 

the time domain. 

 

 
 

(29) 

 
 

(30A) 

 
 

(30B) 

 

(30C) 

 

Where  is the fluid bulk modulus, which depends 

on the piston chamber’s pressure and temperature 

(Eq. 30A, 30B, and 30 C). Using an HLP32 fluid, 

the constant values are 

 [17]. 

 

 are the leakages (Figure 7) 

through 3 lubricating gaps: the piston to cylinder 

block, cylinder block to valve plate, and slipper to 

swash plate gaps, respectively [15].   is the sum 

of the flow rates between the  chamber and the 

pump ports [17]. Since leakages mainly depend on 

gap height, the optimum leakage is given by the 

optimum gap height. For example, for the piston to 

cylinder block, optimum gap height  is given by 

equation (31) [15]. 

 

 

(31) 

 

 
Fig. 7. Piston Leakages. Adapted from [15] 

 

The fluid volume, , inside a chamber can be 

computed using (equation 32): 

 

 (32) 

 

The change of the volume over time, , is 

given by (equation 33): 
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(33) 

 

Where  is the fluid volume when the piston is at 

top dead center (TDC).  

 

 
Fig. 8. Schematic of the axial piston pump with the 

connected lines. Adapted from [23] 

 

The suction and discharge flow rates were 

simulated using the turbulent orifice (Figure 8) 

equations (34) and (35).  

 

 
 

(34) 

 

(35) 

 

Where  and  are the discharge 

coefficients. It is assumed that 

.   and   are the 

valve plate opening areas for flow transfer between 

the chamber and the pump ports.  

are the discharge port pressure and suction port 

pressure, respectively, while   is the chamber 

pressure. 

 
Fig. 9. Linear Kidney Port Linear Model 

 

In this work, we analyze the effect of using the 

Ideal Timing Technique. To get the effective 

kidney port area ( ), we defined 6 angles for each 

kidney port. These angles are measured from TDC 

to the piston chamber orifice center, as is shown in 

Figure (9). The area definition is specified using a 

linearized kidney model, as follows: 

:  

 (36) 

  

 (37) 

  

 (38) 

  

 (39) 

  

 (40) 

  

 (41) 

  

 (42) 

  

Where  is the curvature ratio and  is the piston 

chamber opening center distance. 

 are the angular positions 

at which  the chamber starts and finishes contacting 

the port. 

 

According to [23], to model the system pressure 

caused by the charge, a virtual throttling valve can 

be used at the pump inlet and outlet (equations 43 

and 44). This strategy allows sufficient equations 

for pressure simulation. In this case, low pressure 

is assumed as a constant. 

 

 
(43) 

 
(44) 

 

Where is the instantaneous fluid bulk modulus 

at the discharge chamber, which is calculated using 

equations (30A, 30B, and 30C). and  are 

the discharge port and suction port volumes, 

respectively. These values depend on the manifold 

geometry.  and  are the discharge port 

inlet and outlet flow rates.  is computed by 

summing the piston discharge flow rates (equation 

45).  

 

 

(45) 
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To compute , a modification of equation (34) 

is used (equation 46). The throttle valve area, 

,was calculated using a mathematical 

regression. 

 

(46) 

 

To sum up, this model considers a total of 10 ODE 

(1 for each piston and 1 for the discharge port 

pressure) that must be solved simultaneously with 

the other normal equations. This allows for the 

computation of the instantaneous pressure at each 

piston chamber and at the discharge port, taking 

into account the compressibility of the working 

fluid. For this stage, the objectives were to 

minimize flow leakages , and to minimize the 

noise sources  and . There are 8 

decision variables; 4 angles each for both kidney 

ports. Restrictions are used so that there is no over-

pressurization or cavitation. In this phase, we use 

the same penalized model as in the first 

optimization stage. 

 

 
(47) 

 

 

 

(48) 

 

 

 

 

(49) 

  

Where  is proportional to the difference between 

the minimum pressure and the cavitation pressure. 

 is proportional to the difference between the 

maximum pressure and the operating pressure. 

 are the restrictions due to the decision 

variable limits.  

 

2.4 Computational framework architecture and 

methodology 

 

A multi-level scheme of C++ template-based 

classes was developed. The SMEDT has 11 classes 

and 4 structures (also referred to as "objects", 

which are organized hierarchically as shown in 

Figure (2) .The optimization manager (OM) is the 

main object since it sets and manages the 

optimization process tasks. It also allows for data 

input and output, and for setting user preferences. 

The simulation manager (SM) is the secondary 

object and allows for simulation method changes. 

For a better understating of SMEDT operations, the 

first and second stage optimizations are depicted in 

Figure (10). 

 

The OM selects PSO or GA depending on the 

user’s choice. Then, the optimizer creates an initial 

random-safe population. Thereafter, each of the 

particles or chromosomes evaluates its solution on 

the pump model. For this operation, the simulator 

computes the pump’s dynamic response and 

thereby captures flow and pressure oscillations. 

This finished, the simulator checks if there is 

cavitation or over-pressurization, then computes 

the penalized objective function and continues this 

cycle until the optimum solution is found or the 

maximum number of iterations is reached. This 

process is performed 4 times, one for each 

operating point. The final four optimal designs are 

evaluated with respect to the other 3 operating 

points to guarantee that they still satisfy the design 

restrictions. Finally, the best design is selected by 

comparing each design’s 4 operating point 

penalized fitness.  

 

 

3. SIMULATION AND RESULTS 

 

To validate the efficiency of the SMEDT, an 

optimization of the pump’s design was conducted 

varying the operating pressure and operating 

angular velocity. This creates an operating range 

that is framed by 4 critical operating points, as 

shown in Figure (10).  

 

Table 3: Pump Specifications 

Pmax Pmin nmax nmin 

330 [bar] 230[bar] 2000 [rpm] 1200[rpm 

 

The minimal and maximal pressure and velocity 

values are shown in Table (3). This section is 

divided into two parts to independently analyze the 

influence of the optimizer algorithm and its number 

of iterations on the first stage of the study case, and 

to analyze the SMEDT’s overall performance on 

the sustainable design of a fixed displacement 

swash plate type axial piston pump.  
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Fig. 10. SMEDT Algorithm 

 

 

 

3.1. GA and PSO results comparison 

 

In this section, we performed only the first stage 

optimization – since it is the less time-consuming 

of the two – using GA and PSO at 100 and 1000 

iterations each. The process was repeated 10 times 

to find the deviation of the results. The pump and 

the optimization parameters are shown in Tables 

(3) and (4). 

 

Table 4: Optimization Algorithm Specifications 

 Iter. Part./ Chrom Selection CR 

PSO 100-1000 20 N/A N/A 

GA 100-1000 50 Roulette 0.8 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 11 Change of Optimum  varying   
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Figure 12. Change of Optimum  varying  

 

 
Figure 13. Change of Optimum  varying  

 

The results (Figure 11, 12 and 13) showed – more 

clearly in the case of PSO – a tendency to increase 

the decision variable values with the increase of the 

displacement volume. In the case of GA, the 

average fitness for the 100 iteration test is -9.32. 

This fitness value also has a high deviation. When 

increasing the number of iterations to 1000, the 

fitness improves to a value of -12, 45 and the 

oscillations decrease about 20%. In the case of 

PSO, the results at 100 iterations and 1000 

iterations show an average fitness of -22.54, with 

deviations lower than 0.001% and 0.000001%, 

respectively. 

 

Table 5: Full Pump Design Parameters 

Operating Conditions Magnitude 

Maximum Operating Pressure [bar] 330 

Min. Operating Pressure [bar] 230 

Max. Operating Angular Velocity 

[RPM] 
2000 

Min. Operating Angular Velocity 

[RPM] 
1200 

Displacement Volume  [cc] 34 

Number of Pistons Z 9 

3.2 Pump full design using PSO 

 

In this section, the results of the full optimal design 

of the swash plate axial piston pump are shown to 

validate SMEDT efficiency. The design parameters 

are shown in Table (5). 

 

Since the first optimization only takes into account 

the mechanical design, the optimization process is 

performed only on the most critical operating 

points (i.e. maximum pressure and maximum 

angular velocity) where the stresses on the 

components are at their maximums. The results of 

this stage are shown in Table (6). 

 

Table 6: First Stage Results: Main Dimensions 

Design Parameters Magnitude 

Swash Plate Angle β [°] 19 

Piston Diameter [mm] 15,3 

Piston Pitch Radius R [mm] 29,7 

Length of Piston Shirt  [mm] 28 

Piston Outstanding Length in ODC   21 

Total Piston Length  [mm] 49 

 

On the other hand, the second optimization stage 

takes into account the four (4) critical operating 

points to guarantee good performance along the 

whole operating range. The results for each 

operating point are shown in Table 7. The second 

stage total computation time was 24 hours. 

 

Table 7: Port Plate Optimal Design at the 4 Oper. 

Points 

Operating 

Point 

Discharge Port Suction Port 

 Start End Start End 

1 17.83 153.91 188.55 330.97 

2 20.54 158.22 191.01 331.26 

3 14.56 157.23 189.09 331.03 

4 18.89 158.52 190.23 331.59 

 

4. DISCUSSION 

In this paper, the performance of the modular 

computational framework SMEDT for achieving a 

sustainable mechanical design for any machine was 

demonstrated by analyzing as a study case the 

design of a fixed displacement swash plate axial 

piston pump and varying the optimization method. 



           ISSN: 1692-7257 - Volumen 1 – Número 31 - 2018 
 

 

148 
Universidad de Pamplona 
       I. I. D. T. A. 

       Revista Colombiana de 
Tecnologías de Avanzada 

The tests were performed taking into account the 

holistic machine behavior over an operating range 

and not only at a single point.  This research also 

validated the efficiency of the GA and PSO 

methods for optimizing a mechanical design. 

 

To guarantee the accuracy of the SMEDT, a 

divide-and-conquer test approach was taken; that 

is, individual tests were performed separately for 

each framework module [24].  To demonstrate the 

effectiveness of the GA and PSO optimization 

algorithms, we used six test problems [25]. There, 

PSO showed differences smaller than 2% over the 

best solution on each of the test problems; whereas 

GA resulted in differences smaller than 7% 

compared to the best solution. Following the same 

scheme, the simulation module was tested on four 

problems [8]. The results showed consistency with 

the ones arrived at using MATLAB. 

For the machine module evaluation, the results 

obtained in the two-stage optimization approach 

(Figure 14 and 15) were compared to those from 

the literature [1], [17]. For the first stage, the 

comparison was made using a Purdue University 

graduate thesis [1], and in spite of that fact that our 

model does not include a complete pump barrel 

force assessment, the results showed differences 

smaller than 3% in all the basic dimensions of the 

rotating group. It was found that to increase 

accuracy, especially when the discharge pressure is 

low, it is recommended to add design constraints 

due to the movement restriction imposed by the 

geometry of the slipper piston assembly.  

 

Besides the above caveat, the results behaved as 

expected and the influence of the piston inertial 

force and centrifugal force are minimal, especially 

on small pumps. It was found that for 24cc pumps 

working at 330 bar, the first optimization decision 

variables do not appear to depend on the angular 

velocity at which the pump is working. This is 

because, although there are three forces acting on 

the piston, the pressure force impacts mostly upon 

the size of the rotating group. For example, in the 

case of the swash plate angle, the choice of 

whether to include or exclude centrifugal and 

inertial forces resulted in a difference of less than 

0.5°. Such a variance has no influence on the final 

design because the normalization process 

compensates for it. From the above, we can 

conclude that the results obtained are consistent 

with expectations for the pump’s mathematical 

model [26]. 

The optimization methods used to solve the first 

stage were also compared for 100 and 1000 

iterations. It was found that PSO showed a better 

response in both cases. This suggests that PSO is a 

good choice for solving engineering problems even 

with few iterations, which is a reflection of a good 

balance between exploration and exploitation. This 

efficiency translates into a reduced requirement for 

computing time (about 60% less). Conversely, GA 

seems to get trapped in local optima (which violate 

some design constraints) and thus it insufficiently 

explores the search space. GA also shows a strong 

dependence on the number of iterations and the 

chosen mutation factor. To address this finding, we 

are currently performing a study of the sensitivity 

of PSO and GA parameters on the design of the 

pump and other industrial machines using a parallel 

PSO and GA parameters optimization stage based 

on the Simplex method [27].  

 

Regarding the second optimization stage (port plate 

optimization), to ensure more reliable and 

consistently realistic results, we include an 

embedded simulation process in each optimization 

cycle to capture variations in fluid density and 

compressibility (dependent on pressure and 

temperature), and the delivered and lost flows 

(dependent on the geometry of the plate ports), 

Since previous studies [17] do not show all the 

optimization parameters, a complete numerical 

comparison is not possible. However, this study did 

compare the dynamic response of the pump to that 

found in the literature, finding a remarkable 

consistency in the shape and size of the ripples in 

the graphs of pressure, flow discharge, and 3 axis 

moments. To increase the depth of the analysis, we 

are working on a CFD module that will allow us to 

fully characterize flow loss clearances. 

 

The good performance of our application make it 

an appropriate supportive decision-making tool for 

sustainability. In the current study, the criterion for 

sustainability in the first stage was the reduction of 

the pump size for a specific operating range to 

reduce consumable resources required [28].  In the 

second stage, it was the improvement of the overall 

efficiency to decrease energy consumption. 

However, other sustainable criteria could be 

additionally integrated into the SMEDT, for 

example, design optimization for manufacturing. 
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Figure 14. Optimal Designs’ Over Pressure Peaks Analysis at Critical Angular Positions 

 

 

 
Figure 15. Optimal Designs’ Cavitation Analysis at Critical Angular Positions 

 

 

For the aforementioned reasons, the SMEDT 

makes possible a revolution in methodology for 

designing machines and products, as it reduces the 

need to build prototypes and diminishes associated 

costs. This implies that commercially sustainable 

machines can compete on price with less 

environmentally-friendly machinery. This option 

would generate an additional incentive for 

companies to make the transition towards 

sustainable development of the industry. 

 

5. CONCLUSION 

 

To conclude, the computational framework 

SMEDT substantially improves the design process, 

allowing for more complex models, as was proved 

using the design of the swash plate axial piston 

pump. These improvements have a positive impact 

on cost, time, precision, and efficiency and occur 

due to our method’s ability to provide quality 

solutions to constrained multi-objective problems, 

including problems with an embedded simulation. 

We observed a considerable advantage for PSO 

over GA in all of the analyzed aspects. PSO results 

were always better than GA at both 100 and 1000 

iterations. This result occurred because PSO has a 

larger exploration component than GA. Finally, the 

convergence of PSO was better because of the use 

of the Clerc algorithm [5] 
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