Predictive Models for Strawberry supply estimation in Cundinamarca. A comparative Approach Using Machine Learning and Regression
DOI:
https://doi.org/10.24054/face.v25i3.4236Keywords:
Strawberries, Multiple linear regression,, Time series, Models, PredictiveAbstract
Strawberry cultivation in Cundinamarca represents a key agricultural activity with a significant regional economic impact. This study aims to evaluate and compare different forecasting models to estimate the future supply of strawberries, considering variables such as cultivated area, yield, and production. Time series methods (Holt and Brown exponential smoothing), the AdaBoost algorithm, and a multiple linear regression model were applied, using historical data from the Ministry of Agriculture and Agronet. The results indicate that the multiple linear regression model exhibited the best performance, achieving a coefficient of determination of 0.9947 and outperforming the time series methods, which presented average errors exceeding 17%. Normality and homoscedasticity tests statistically validated the robustness of models. It is concluded that the proposed model provides an effective tool for agricultural planning in Cundinamarca allowing for projections of production increases associated with the expansion of cultivated areas and improvements in yield per hectare. Future research is recommended to integrate climatic variables and agricultural policy factors to enhance forecasting accuracy.
Downloads
References
Agronegocios. (2024, septiembre). Precios de fresa en Andina, Cundinamarca. https://www.agronegocios.co/precios/fresa/andina/cundinamarca
Alarcón, M. J. (2009). Calificación del método de pronóstico de Torres (Segunda parte). Poliantea, 5(9).
Barak, S., & Sadegh, S. S. (2016). Forecasting energy consumption using ensemble ARIMA–ANFIS hybrid algorithm. International Journal of Electrical Power & Energy Systems, 82, 92-104.
Balaji, P., & Dakshayini, M. (2018). Performance analysis of the regression and time series predictive models using parallel implementation for agricultural data. Procedia Computer Science, 132, 198-207.
García-Mora, V. M., Ilbay-Yupa, M., & Veintimilla, R. A. R. (2023). Modelo de predicción para los factores que influyen en el rendimiento del cultivo de papa (Solanum tuberosum) en Ecuador. Bases de la Ciencia, 8(2).
Gelves Alarcón, Ó y Navarro Romero, E. (2021). Principios de la gestión de la producción. Una revisión teórica y aplicada de los conceptos. Universidad Santo Tomás.
Hanke, J. E. (2010). Pronósticos en los negocios (9ª ed.). México: Pearson Educación.
Hastie, T. (2009). The elements of statistical learning: data mining, inference, and prediction. Ed springer
Kumar, A., & Agrawal, S. (2023). Challenges and opportunities for agri-fresh food supply chain management in India. Computers and Electronics in Agriculture, 212, 108161.
Maskey, M. L., Pathak, T. B., & Dara, S. K. (2019). Weather Based Strawberry Yield Forecasts at Field Scale Using Statistical and Machine Learning Models. Atmosphere, 10(7), 378. https://doi.org/10.3390/ATMOS10070378
Ministerio de Agricultura de Colombia. (2024). Cifras sectoriales: Fresa. https://sioc.minagricultura.gov.co/Fresa/Documentos/2021-0331%20Cifras%20Sectoriales.pdf
Mohamed-Amine, N., Abdellatif, M., & Belaid, B. (2024). Artificial intelligence for forecasting sales of agricultural products: A case study of a moroccan agricultural company. Journal of Open Innovation: Technology, Market, and Complexity, 10(1), 100189.
Nassar, L., Okwuchi, I. E., Saad, M., Karray, F., Ponnambalam, K., & Agrawal, P. (2020). Prediction of Strawberry Yield and Farm Price Utilizing Deep Learning. International Joint Conference on Neural Network, 1–7. https://doi.org/10.1109/IJCNN48605.2020.9206998
Oh, H. R., Lim, J., Yang, S. B., Shin, C.-S., & Cho, Y. (2022). A Study on the Prediction of Strawberry Production in Machine Learning Infrastructure. 11(5), 9–16. https://doi.org/10.30693/smj.2022.11.5.9
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Oscar Mauricio Gelves Alarcón,Nataly Lorena Guarín Cortés,María Paula Peña Martínez, María Fernanda Rebolledo Marulanda

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
