CLINICAL CASE

ENFERMEDAD HUÉRFANA CREUTZFELDT-JAKOB; IMPACTOS PSICOSOCIALES PARA FAMILIARES

ORPHAN CREUTZFELDT-JAKOB DISEASE; PSYCHOSOCIAL IMPACTS FOR FAMILY MEMBERS

Dorian Enrique Rivera Vizcaino 1, Luis Alfredo Jiménez Rodríguez 1, Johan Sebastián Jiménez Ospina 5, Isabella Sofia Jiménez Ospina 6.

Recibido: 15 de enero de 2025. Aprobado: 15 de Marzo de 2025

RESUMEN

Objetivo: Evaluar el impacto psicosocial en los familiares del caso de la enfermedad huérfana (EH) Creutzfeldt-Jakob (ECJ). **Metodología**: Reporte de caso con diagnosticó de ECJ y entrevista a familiares de los impactos y desafíos psicosociales. **Resultado**: Se realizó cronología de la ECJ y se definió la operacionalización donde se determinó factores psicológicos de la emoción, el malestar psicológico (incluyendo la depresión, la ansiedad y el estrés) y los factores sociales del aislamiento social, el apoyo social a los familiares. **Conclusiones**: La ECJ debe considerarse como un diagnóstico diferencial en pacientes que presentan síntomas psiquiátricos, cambios de personalidad y síntomas neurológicos focales; asimismo, en el momento del diagnóstico de las personas afectadas por una EH, los familiares que experimentaron este proceso de su familiar con ECJ, no solo mostraron una mayor necesidad de atención psicológica durante el tiempo empleado en la búsqueda de un diagnóstico, sino que una vez obtenido este, también sintieron de forma más aguda las implicaciones sociales.

PALABRAS CLAVE: Enfermedad huérfana, Impactos psicosociales, informe de caso, ECJ.

ABSTRACT

Objective: To evaluate the psychosocial impact on the relatives of the case of orphan Creutzfeldt-Jakob disease (CJD). Methodology: Case report with a diagnosis of CJD and interview with family members about the psychosocial impacts and challenges. Result: Chronology of CJD was conducted and the operationalization was defined where psychological factors of emotion, psychological distress (including depression, anxiety, and stress) and social factors of social isolation, social support for family members were determined. Conclusions: CJD should be considered as a differential diagnosis in patients

How to cite this article: Cano-Barrios Allison, Huerta-González Sara, De La Hoz-Quintero Cristian, Montes-Mosquera Claudeth, De Arco-Castrillón Ángela, Characterization and Attitudes Towards Gender-Based Violence in Nursing Students in Colombia 2024. Revista Ciencias Básicas En Salud, 3(1):1-17. April 2025, ISSN 2981-5800.

¹ MD, Especialista en Medicina Interna. Grupo de Investigación CORPIES. ESE HEQC, drdorianriveravizcaino@gmail.com

² PhD. Ciencias Gerenciales. Investigador Asociado Minciencias. Integrante del grupo de Investigación CORPIES <u>lualf0115@gmail.com</u>

³ Medico en formación, Fundación Universitaria San Martin; Grupo Investigación CORPIES.

⁴ Medica en formación, Universidad de Pamplona; Grupo Investigación CORPIES.

presenting with psychiatric symptoms, personality changes, and focal neurological symptoms; Likewise, at the time of diagnosis of people affected by a rare or orphan disease, family members who experienced this process of their relative with CJD not only showed a greater need for psychological care during the time spent searching for a diagnosis, but once this was obtained, they also more acutely felt the social implications.

KEYWORDS: Orphan disease, Psychosocial impacts, case report, ECJ.

INTRODUCCIÓN

The term orphan disease is a general designation used to describe conditions with low prevalence within the population [1]. While there is no universally accepted definition of orphan diseases (ODs), in the Colombian context, Law 1392 of 2010 classifies these conditions as a public health priority, establishing measures to ensure the well-being and social protection of affected individuals and their [2]. Additionally, caregivers diseases are characterized as severe. chronically disabling, and potentially lifethreatening conditions, with a prevalence of fewer than 1 in 5,000 individuals [3]. Although each disorder is rare on its own—amounting to an estimated 6,000 to 8,000 distinct ODs [4]—it is estimated that, collectively, between 6% and 10% of the population is affected by an orphan disease [5].

In 2023, Colombia reported 13,714 cases of orphan diseases (ODs), representing a 3.46% decrease compared to 2022, when 14,206 cases were reported [1]. These figures indicate that a significant number of individuals are affected by an orphan disease—either as patients themselves or as caregivers or parents of those living with such conditions [2].

Although there is considerable variation in the etiology and symptomatology of orphan diseases (ODs) [6], the majority are of genetic origin and tend to be chronic, complex, and debilitating [7]. Unlike individuals with more common

conditions, those affected by ODs often face а lack of awareness understanding from healthcare and social service professionals [8], as well as prolonged and delayed diagnostic processes [9]. On average, it takes more than five years for a person to receive an accurate diagnosis of an OD [10], with some individuals waiting decades and others never receiving a definitive diagnosis [11]. From the onset of symptoms to the final diagnosis—a period often referred to as the "diagnostic odyssey" due to its frequently extended nature—many patients must attend numerous medical appointments, consult with multiple healthcare professionals and specialists, undergo a series of (sometimes invasive) medical investigations, and endure inadequate or inappropriate treatments [12][13]. Even after a diagnosis is made, there is typically a lack of available information about the disease, limited treatment pathways, barriers to accessing optimal therapies, and a scarcity of specialized services and support [9].

In this context, the burden of the disease and its associated challenges often fall on the individual's family members—particularly parents, siblings, and, in some cases, spouses. In addition to navigating complex and often confusing medical processes, parents are most likely to serve as the primary caregivers of individuals with an orphan disease (OD), frequently providing substantial physical, practical, and emotional care [14]. The care required is often extremely

demanding, intensive, and tailored to the specific needs of the affected individual. Families of those living with ODs frequently face the added challenges of limited access to support services, expert professionals, and relevant advocacy groups [12]. Although there is variation in the clinical presentation and symptoms across different ODs, there appear to be commonalities in the experiences and challenges faced by family members.

For this reason, prion disease was selected as a case study. It is a lethal, neurodegenerative orphan disease that affects both humans and animals. The condition is caused by the misfolding of prion proteins (PrP). Formerly referred to transmissible spongiform encephalopathy, the term prion was coined by Stanley B. Prusiner in 1982, derived from "proteinaceous infectious particle." Although prion diseases in humans are extremely rare—with an incidence of approximately two cases per million—Creutzfeldt-Jakob disease (CJD), a type of prion disease, is the most common form worldwide [15].

Most family members and caregivers of individuals with an orphan disease (OD) are required to confront numerous challenges, and it is not unexpected that they often experience a significant caregiving burden, along with adverse effects on their health and lifestyle [14]. Moreover, due to the impacts on both the patient and their spouse, it is unsurprising that other family members—such as parents and siblings—are also frequently affected by having a relative with an OD. While some family caregivers report positive aspects of supporting a person with an OD, numerous studies have found that these challenges often lead to negative psychosocial outcomes and a reduced quality of life among family members of individuals with ODs [9].

The effects of orphan diseases (ODs) can be understood through a biopsychosocial lens, and recent studies have reported that applying this model can help elucidate the broader impacts of ODs and illness in general [16]. Indeed, the World Health Organization's International Classification of Functioning, Disability and Health (ICF) is grounded in this framework [17], recognizing importance of adopting a multifaceted approach to health and well-being. A biopsychosocial approach acknowledges that ODs have a biological basis, implying that accurate biomedical diagnosis and, where possible, medical interventions are likely to benefit both the affected individual and those who support them.

It also recognizes that the specific biological characteristics of a given disorder are strongly associated with outcomes. However, biomedical factors do not fully explain the impacts of orphan diseases (ODs), and it has long been acknowledged that psychological factors (e.g., coping style) and social factors (e.g., access to social support) are also fundamental to understanding influence and outcomes of ODs. The objective of this research is to focus on psychological and social (psychosocial) effects of ODs on family members.

Creutzfeldt-Jakob disease (CJD) is a rapidly progressive, rare, transmissible, and universally fatal neurodegenerative condition caused by prion proteins. The disease has a long incubation period [18][19]. CJD was first described in 1920 by Hans Creutzfeldt and subsequently in 1921 and 1923 by Alfons Jakob. Later, Clarence J. Gibbs began using the term "Creutzfeldt-Jakob disease" because the acronym "CJD" more closely matched his initials [20][21]. CJD is caused by transmissible agents known as prions, which replicate within the central nervous

system (CNS) and produce characteristic neuropathological findings, including spongiosis, gliosis, neuronal loss, and deposition of pathological prion protein (PrP^Sc). Human transmissible spongiform encephalopathies (TSEs) include sporadic, genetic, iatrogenic, and infectious forms [22]. Surveillance of human TSEs began in Italy in 1993, and sporadic Creutzfeldt-Jakob disease (sCJD) is currently considered the predominant human prion disease both in Colombia and worldwide. The identification and mandatory reporting of CJD cases in Colombia have enhanced our understanding of CJD pathogenesis, its variable clinical phenotypes, and possible geographic clusters.

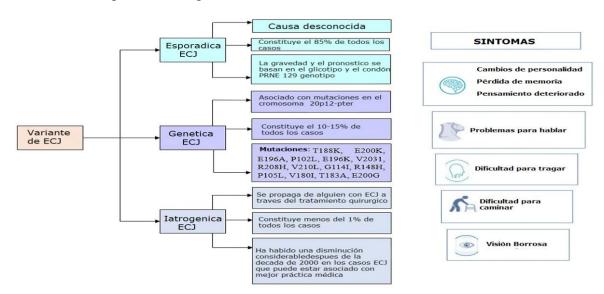
Creutzfeldt-Jakob disease (CJD) primarily affects the central nervous system (CNS). The main functional unit of the CNS is the neuron, a unique type of cell capable of receiving, storing, and transmitting information. Neurons in the CNS do not regenerate, although certain brain regions may exhibit limited healing due to the presence of stem cells. The features that make the CNS distinct from organ systems include following: autoregulation of cerebral blood flow; protection by the bony skull; special metabolic substrate requirements; absence of а true lymphatic system: circulation cerebrospinal fluid (CSF); limited immune surveillance; and distinct mechanisms for injury response and tissue repair.

A prion protein (PrP) is a normal neuronal protein predominantly composed of α -helices and random coils. Infectious particles known as "prions" are self-propagating proteins that lack nucleic acids and primarily consist of proteinase K-resistant β -sheet-rich aggregates. Prions replicate by interacting with normal cellular isoforms of PrP, converting α -helices into indigestible β -sheet

conformations. These particles cause Creutzfeldt-Jakob disease (CJD) and other transmissible spongiform encephalopathies such as bovine spongiform encephalopathy (mad cow disease), kuru, and scrapie.

Creutzfeldt-Jakob disease (CJD) can be classified according to its mode of transmission. Sporadic CJD, the most form (approximately common results from the misfolding of normal PrP isoforms without apparent triggers. Subtypes sporadic CJD include of sporadic fatal insomnia and proteasesensitive prionopathy. Genetic CJD, the second most common (approximately 10–15%), from arises inherited genetic mutations. Subtypes of this condition include familial CJD, familial fatal insomnia, and Gerstmann-Sträussler-Scheinker syndrome.

Infectious Creutzfeldt-Jakob disease (CJD) accounts for less than 1% of cases and results from the transmission of prions from an external source. Subtypes of infectious CJD include kuru, iatrogenic CJD, and variant CJD. Kuru is a disease of the Fore people of Papua New Guinea, who consumed the brains of deceased relatives as part of ritualistic cannibalism before the practice was banned in the 1950s. latrogenic CJD arises from the inadvertent inoculation of prions during medical procedures. Variant CJD ingestion associated the with contaminated beef, a mechanism similar to bovine spongiform encephalopathy. The majority of documented variant CJD cases originate from the United Kingdom and France [23][24].


In this regard, Creutzfeldt-Jakob disease (CJD) occurs in three forms: sporadic, familial, and iatrogenic or acquired (Figure 1). Primarily, approximately 85% of cases are sporadic (sCJD), while around 10–15% are genetic (gCJD), and

fewer than 5% are of iatrogenic origin. Very few cases are acquired through infection following exposure to bovine spongiform encephalopathy (BSE). The number of acquired CJD cases has markedly declined as treatment-related

setbacks have decreased over time [25][26].

Figure 1. Self-developed (2024). Variants and symptoms of Creutzfeldt-Jakob disease (CJD): This figure provides a concise overview of the different CJD variants—sporadic, genetic, and iatrogenic—alongside their common clinical manifestations.

Creutzfeldt-Jakob disease (CJD) affects approximately one person per million annually worldwide. Approximately 350 cases are diagnosed each year in the United States. Sporadic CJD is the most common form of human prion disease. The disease has a median age of onset of 62 years, although cases have also been reported in younger and older age groups [27][28]. Sporadic CJD occurs with an approximately equal male-to-female ratio. Approximately 1 to 2 new sporadic CJD cases arise annually per 1,000,000 individuals worldwide [29]. Death occurs in nearly 70% of patients within one year of symptom onset. The median survival time for sporadic CJD is 4 to 8 months, with 90% of patients dying within one year.

The normal cellular prion protein (PrP^C)

converts into the disease-causing form, scrapie prion protein (PrP^Sc), either spontaneously or as a result of infection by PrP^Sc. PrP^Sc self-propagates throughout accumulates the brain. Chemically stable β-sheet-rich aggregates disrupt protein folding, ubiquitination, and intracellular protein trafficking in affected neurons. Additionally, astrocytes may swell and degrade in response to prioninduced injury. Neurodegeneration results from these pathological changes [30].

The macroscopic examination of affected brains may not reveal any abnormalities. However, the following features are commonly observed under light microscopy (see Image: Neuropathological Confirmation of Creutzfeldt-Jakob Disease): vacuolization

or spongiform degeneration, most notably in the cerebral cortex, caudate nucleus, thalamus, putamen, and molecular layer of the cerebellum; neuronal loss; astrocytic gliosis or fibrous proliferation of astrocytes, primarily in the gray matter; and in some individuals, the presence of amyloid plaques.

CASO CLINICO

A 62-year-old male presented with sleep disturbances and nonspecific pain in the upper limbs and cervical region, persistent neck pain, the onset of ataxic gait, and a six-month history of memory loss, behavioral abnormalities, and difficulty walking. The initial symptom was the gradual onset of forgetfulness regarding recent events, which progressively

worsened to impair the ability to perform professional tasks.

developed He behavioral changes characterized by decreased interest, irritability, and agitation. Over the following months. his family observed progressive instability. gait subsequent three months, he developed sudden. spasm-like movements resembling electric shocks, initially affecting the upper limbs and gradually progressing to involve the lower limbs as well. These spasmodic movements were triggered by sudden noises. Throughout the disease course, he exhibited signs of bulbar dysfunction and emotional lability. neurodegenerative disorder suspected, with a probable diagnosis of Creutzfeldt-Jakob disease (CJD).

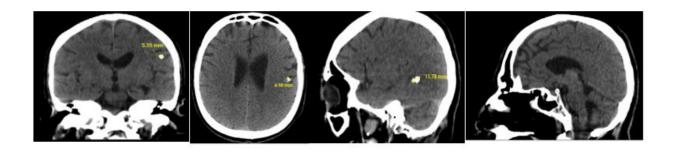
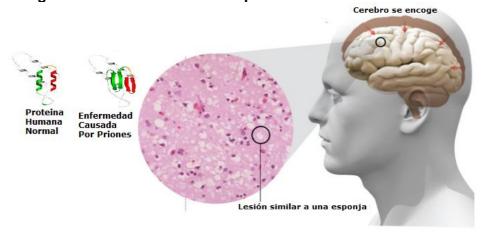
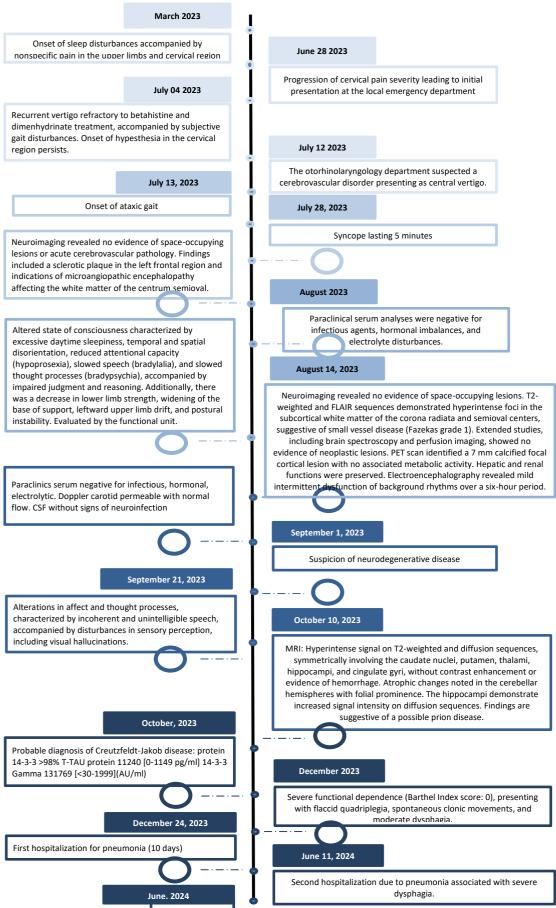


Imagen No.1 de TAC Cerebral de paciente con ECJ




Gráfico No.1, Fuente autores (2024) Caracterización de enfermedad ECJ

In contrast to existing literature, a chronological timeline detailing the progression of CJD is presented for a

reported case involving a 62-year-old patient (figure 2).

JOURNAL OF BASIC SCIENCES IN HEALTH, 3(1):1-16. APRIL 2025, ISSN 2981-5800.

Figure 2. Source: Authors. Timeline of Disease Progression in a Case of CJD.

The postmortem CentoXome® MOx 1.0 Solo test reported the following findings: Altered thalamic signal intensity on MRI; morphological thalamic abnormalities: anarthria; caudate nucleus abnormalities; headache: dysarthria: hyperreflexia: hypertonia; abnormal cerebral imaging; history of myocardial infarction; focal T2 hyperintense lesion in the basal ganglia; abnormal morphology of the putamen; neurodegeneration; loss of ambulation; loss of speech; syncope; tremor; and vertigo.

These clinical features were documented in accordance with Human Phenotype Ontology (HPO) terminology.

Inconclusive Result – Variant of Uncertain Significance (VUS) Identified a potentially relevant finding has been identified: a heterozygous variant of uncertain significance (VUS) in the PSEN1 gene. Pathogenic variants in PSEN1 are known to be associated with Alzheimer's disease type 3 with spastic paraparesis, as well as autosomal dominant apraxia. However, based on currently available evidence, the clinical significance of this specific variant remains uncertain.

The variant has been included in the section on potentially relevant findings. No additional clinically significant variants related to the described phenotype were detected.

Tabla 1. Hallazgos principales:

SEQUENCE VARIANTS											
GENE	COORDINATES OF THE VARIANT	AMINO ACID CHANGE	SNP IDENTIFIE R	ZYGOSITY	PARÁMETERS IN SILICO*	ALLELIC FREQUENCIE S**	TYPE AND CLASSIFICATION***				
PSEN 1	NM_000021.3:c.1120 C>T	p.(Pro374S er)	N/A	heterozygo te	PolyPhen: - Align-GVDG: N/A SIFT: Tolerated MutationTast er: Pathogenic Conservation t:	gnomAD: - ESP: - 1000 G: - CentoM D: -	Missense undetermin ed significance (clase 3)				

The PSEN1 c.1120C>T (p.Pro374Ser) variant results in an amino acid substitution of proline to serine at position 374, located in exon 10 of 12. This variant has not been previously reported in the literature reviewed. According application the CENTOGENE's ACMG/AMP/ClinGen SVI guidelines, it is currently classified as a variant of uncertain significance.

Pathogenic variants in the *PSEN1* gene are associated with early-onset autosomal dominant Alzheimer's disease (EOAD), a progressive neurodegenerative disorder characterized by cognitive decline. Although EOAD shares the same clinical phenotype as

sporadic Alzheimer's disease (AD), it presents at a younger age, typically before 60 years. The initial manifestations of EOAD commonly include episodic memory impairment or behavioral changes. Patients are often anosognosic, making the presence and involvement of a family member crucial for diagnosis. Neurological features that may be associated with EOAD include spastic paraparesis, intracerebral hemorrhages. seizures, extrapyramidal symptoms, and, in rare cases, cerebellar ataxia.

Mode of inheritance: Autosomal dominant (OMIM®: 607822).

Table 1 summarizes variants associated with disorders that show no clear

phenotypic overlap with the clinical presentation and/or exhibit a zygosity pattern inconsistent with the expected mode of inheritance. For instance, this may include a variant of uncertain significance (VUS) in a gene with only partial clinical correlation, or a single heterozygous pathogenic variant in a gene typically associated with an autosomal recessive condition that only partially overlaps with the observed phenotype.

These variants are included in this report due to their potential relevance to the patient's phenotype and their possible role in addressing diagnostic uncertainties. For variants that may have clinical significance, further clinical re-evaluation and/or additional investigations such as family segregation analysis may help clarify their contribution to the observed phenotype.

Table 2. Secondary findings

SEQUENCE VARIANTS											
GENE	COORDINATES OF THE VARIANT	AMINO ACID CHANGE	ZYGOSITY	PARAMETERS IN SILICO*	ATTEN D ALLELI C NCIAS S**	TYPE AND CLASSIFICATI ON ***	RELATED DISORDER (OMIM®) AND INHERITAN CE MODE				
COL4 A1	NM_001845.4:c.3260 T>C	p.(Ile1087T hr)	heterozyg ote	PolyPhen: Benigna Align- GVDG: N/A SIFT: Tolerated MutationTaste r: Polymorphism Conservation_ nt: no Conservation_ aa:	Gnom A D: - ESP: - 1000 G: - Cento m D:-	Missens e Significa do uncertain (class 3)	Small brain vessel disease with or without ocular abnormaliti es (175780), AD				

If consent has been provided, and in accordance with ACMG recommendations (ACMG SF v3.2 list for the reporting of secondary findings in clinical exome and genome sequencing; *Genetics in Medicine*, 2023; PMID: 37347242), secondary findings are reported. These include pathogenic and likely pathogenic variants in genes associated with actionable conditions as outlined in the referenced publication. In this case, no clinically relevant variants were detected in the genes recommended for secondary findings.

Carrier State Findings in Table 2 lists sequence variants previously identified or evaluated and classified by CENTOGENE as "pathogenic" or "likely pathogenic" in selected genes associated with severe, early-onset

autosomal recessive Mendelian disorders. As only internally classified variants are included, this table should not be considered an exhaustive list of variants in these genes and does not represent a comprehensive overview of all potentially relevant genetic variants in the patient.

No orthogonal validation was performed for these variants. Therefore, if any of these variants are considered for clinical decision-making, confirmation using an alternative method is recommended. Additionally, variant classifications may change over time as new evidence emerges; however, no reclassification reports will be issued for these variants. It is important to note that the identified variants may indicate additional genetic risks or diagnoses relevant to the

patient and/or their family.

On the other hand, based on existing literature, definition was operationalized encompass psychological factors-such as emotional responses and psychological distress (including depression, anxiety, and stress)-as well as social factors, including social isolation and social support. Although psychosocial impact term occasionally be considered ambiguous, it has been adopted in this context for the sake of consistency with the existing body of research.

Psychosocial impacts, Although the term "psychosocial impacts" is often used in HE literature and research in this area is expanding, it is not well defined what the term precisely encompasses. [31] It appears to have its origin in the definition of psychosocial health by the World Health Organization and consists of psychological, emotional, and social aspects. [32] However, the components of each of these aspects remain ambiguous. Although there is variation in reports of psychosocial impacts, the most commonly reported include psychological distress, emotional experiences, and changes in social family relationships, as educational, leisure, and work activities. In addition, although not fully considered a psychosocial impact due to the inclusion of physical health components [33] and the frequent omission of occupational and leisure aspects, the terms "quality of life" and "caregiver burden" are sometimes used as synonyms for psychosocial impacts in some literature. [33] [34]

Caregiver quality of life and burden therefore measures are sometimes employed to assess how an individual's well-being may be affected by a medical condition [33], with the resulting data often highlighting certain psychosocial impacts experienced by family members. Alternatively, quality of life is occasionally conceptualized as а psychosocial outcome in its own right [35] or as closely linked to psychosocial well-being, where mental health and social factors influence perceived quality of life and, conversely, life quality of may affect psychosocial dimensions [36]. Given the absence of a precise definition psychosocial impacts to date, we define here as а composite emotional, psychological, social. and educational/occupational factors that affect family directly members of individuals with Huntington's disease, explicitly including quality of life.

Accordingly, within this manuscript, psychosocial impacts are conceptualized as a broader construct that encompasses, but is not limited to, quality of life. Drawing on existing literature, this definition has operationalized to include psychological factors such as emotion and psychological distress depression, anxiety, and stress), as well as social factors including social isolation, social support, interpersonal relationships, and participation in occupational, educational, and leisure activities. While the term psychosocial impact may at times be ambiguous, it is employed here for the sake of consistency.

Psychological and emotional impacts, regarding the psychological effects of having a family member with Huntington's disease (HD), evidence indicates that caregiving for an individual with HD is associated with a decline in the caregiver's psychological well-being. [14][37] In terms of emotional impact, [38] conducted interviews with relatives of patients with various stages of HD and reported that spouses and parents, in particular, found caregiving to be emotionally exhausting. commonly Family members experiencing а broad spectrum emotions, encompassing positive feelings and optimism [39], as well as negative emotions such as guilt, fear, frustration. [38] Similarly, [40] observed

that brothers of individuals with HD exhibit diverse and complex emotional experiences, often marked by contradictory feelings.

DISCUSSION

This study is among the few that examine the psychosocial impact of receiving a diagnosis of Huntington's disease (HD) from the perspectives of the affected individual as well as their spouse, parents, relatives, or other informants (e.g., family members. quardians, caregivers). Furthermore, the impact was analyzed in relation to whether the patient experienced a delay in receiving their diagnosis. Given that this is a self-reported study, it is common for a greater proportion of respondents to be individuals who have already received a diagnosis.

As noted above, the psychosocial impact is generally more pronounced among individuals with CJD, underscoring the importance of minimizing the time to healthcare engagement (HE). Patients who experienced a delay in obtaining their diagnosis often require psychological support. Those with delayed diagnoses report greater challenges within social environments. difficulties in explaining symptoms to close friends and family, justifying absences from work or education for medical reasons, and experiencing a lack of psychological support. Likewise, functional consequences of the disease were more severe in patients with CJD who faced longer diagnostic delays. These individuals were disproportionately affected by loss of independence due to disease progression and by the loss of employment or educational opportunities prior to death.

CJD should be considered in the

differential diagnosis of patients presenting with psychiatric symptoms, personality changes, and focal neurological signs. This case particularly noteworthy as it illustrates that neurological manifestations may follow the onset of psychiatric symptoms in CJD. Therefore, comprehensive assessment of patients with psychiatric presentations should include diagnostic procedures such as lumbar puncture, neuroimaging, and other relevant investigations to exclude organic neurological disorders prior to initiating symptomatic treatment for psychiatric conditions. Adopting this approach can help prevent misdiagnosis of progressive disorders such as CJD and facilitate differentiation from other potentially treatable etiologies.

From the perspective of psychosocial impact, this study examined individuals diagnosed with Huntington's disease (HD) in Ocaña, Colombia, registered in a national patient database, using a purpose-designed instrument that directly captures patients' experiences—one of the few assessments conducted directly with affected individuals. Overall, the psychological impact was found to be significant among people with HD. Family members involved in the diagnostic process not only demonstrated an increased need for psychological support during the often-prolonged period of diagnostic uncertainty but also experienced heightened social challenges (e.g., difficulty explaining symptoms to close friends and family or justifying absences for medical reasons) and functional consequences (e.g., loss of independence and diminished employment or educational opportunities) following diagnosis. Finally, to gain a comprehensive understanding of how various family members are differentially affected—and to elucidate the role of risk and protective factors—further research is warranted. In particular, in-depth

studies focusing on domains such as employment, education, and economic impact would make a valuable contribution to the currently limited literature.

REFERENCES

41355

- [1] von der Lippe, C., Diesen, PS y Feragen, KB (2017). Vivir con un trastorno poco frecuente: una revisión sistemática de la literatura cualitativa. *Molecular Genetics and Genomic Medicine*, *5* (6), 758–773. https://doi.org/10.1002/mgg3.315
- [2] Ley 1438. (2011). Enfermedades huérfanas, articulo 140. https://www.funcionpublica.gov.co/ eva/gestornormativo/norma.php?i=
- [3] Muñoz., C. (2024) Enfermedades Huérfanas en Colombia: Panorama Actual. https://consultorsalud.com/enfermedades-huerfanas-en-colombia-panorama-actual/
- [4] Pelentsov, LJ, Fielder, AL, Laws, TA y Esterman, AJ (2016). Necesidades de cuidados de apoyo de los padres con un hijo con una enfermedad huerfana: resultados de una encuesta en línea. *BMC Family Practice*, 17, artículo 88. https://doi.org/10.1186/s12875-016-0488-x
- [5] Elliott, EJ y Zurynski, YA (2015). Las enfermedades huerfana son un problema "común" para los médicos. *Australian Family Physician*, *44* (9), 630–633. https://search-informit-com-

- <u>au.ezproxy.utas.edu.au/document</u> <u>Summary;dn=512019547619809;r</u> es=IELHEA.
- [6] Llubes-Arrià, L., Sanromà-Ortíz, M., Torné-Ruiz, A., Carillo-Álvarez, E., García-Expósito, J., & Roca, J. et al. (2021). Experiencia emocional del proceso diagnóstico de una enfermedad huerfana la ٧ percepción de los sistemas de revisión apovo: una exploratoria. Revista de enfermería clínica, 31, 20-31. https://doi.org/10.1111/jocn.159 22.
- [7] Batshaw, ML, Groft, SC y Krischer, JP (2014). Investigación sobre enfermedades huerfana de la infancia. *Journal of the Americal Medical Association*, 311 (17), 1729–1730, https://doi.org/10.1001/jama.
- 1730. https://doi.org/10.1001/jama.2013.285873.
- [8] McMullan, J., Crowe, AL, Downes, K., McAneney, H. y McKnight, AJ (2021). Experiencias relatadas por cuidadores: apoyo a alguien con una enfermedad huerfana. Salud y atención social en la comunidad, 1–12. https://doi.org/10.1111/hsc.13336.
- [9] Beaulieu, CL, Majewski, J., Schwartzentruber, J., Samuels, ME, Fernandez, BA, Bernier, FP, Brudno. M., Knoppers, Marcadier, J., Dyment, D., Adam, S., Bulman, DE, Jones, SJ, Avard, D., Nguyen, MT, Rousseau, F., Marshall, C., Wintle, RF, Shen, Y., y Boycott, KM. Et al. (2014).Consorcio **FORGE** Canadá: resultados de un proyecto nacional de dos años para el descubrimiento de de enfermedades genes

huerfana. *American Journal of Human Genetics*, 94 (6), 809–817. https://doi.org/10.1016/j.ajhg.2 014.05.003

[10] Vandeborne, van Overbeeke, E., Dooms, M., De Beleyr, B. y Huys, I. et al. (2019). Necesidades de información de los médicos en relación con diagnóstico enfermedades de huerfana: un estudio basado en cuestionarios en Bélgica. Orphanet Journal of Rare Diseases, 14(1), Artículo 99. https://doi.org/10.1186/s13023-

019-1075-8.

[11] Dong, D., Chung, RY-N., Chan, RHW, Gong, S. y Xu, RH (2020). ¿Por qué es más probable que algunas personas enfermedades huerfana reciban un diagnóstico erróneo que otras? Perspectivas de un estudio transversal de base poblacional en China. Orphanet Journal of Rare Diseases, 15 (1), 307 -307. https://doi.org/10.1186/s1302 3-020-01587-2.

[12] Rice, DB, Carboni-Jiménez, A., Cañedo-Ayala, M., Turner, KA, Chiovitti, M., Levis, AW, & Thombs, BD (2020). Beneficios percibidos y facilitadores y barreras para brindar intervenciones psicosociales a cuidadores informales de personas con enfermedades huerfana: una revisión

exploratoria. *Paciente*, 13 (5), 471–519. https://doi.org/10.1007/s4027 1-020-00441-8.

[13] Zurynski, Y., Deverell, M., Dalkeith, T., Johnson, S., Christodoulou, J., Leonard, H., Elliott, EJ, y APSU Rare Diseases Impacts on Families Study Group

(2017). Niños australianos que viven con enfermedades huerfana: experiencias de diagnóstico y consecuencias percibidas de los retrasos en el diagnóstico. *Orphanet Journal of Rare Diseases*, 12 (1), Artículo 68. https://doi.org/10.1186/s13023-017-0622-4.

[14] Boettcher, J., Boettcher, M., Wiegand-Grefe, S., y Zapf, H. (2021). Ser el pilar de los pacientes con enfermedades huérfana: una revisión sistemática sobre la calidad de vida de los padres. Revista internacional de investigación medioambiental salud У pública, 18 (9), artículo 4993. https://doi.org/10.3390/ijerph 18094993

[15] Ironside JW, Ritchie DL, (2017). Jefe MW. Enfermedades priónicas. Hand Clin Neurol. 145: 393–403. Doi: 10.1016/B978-0-12-802395-2.00028-6 https://pubmed.ncbi.nlm.nih.gov/28987186/

[16] Zybarth, D.. Brandt. Mundlos, C. y Inhestern, L. (2023). Impacto de la pandemia de COVID-19 en la atención médica y la vida diaria de los pacientes enfermedades huérfana desde la perspectiva de las organizaciones pacientes: un estudio entrevistas cualitativas. Orphanet Journal of Rare Diseases, 18 (1), 1–8.

[17] Organización Mundial de la Salud. (2002). Informe sobre la salud en el mundo 2002: reducir los riesgos, promover una vida sana. Organización Mundial de la Salud.

[18] Ishibashi D, Homma T,

Nakagaki T, Fuse T, Sano K, Satoh K, Mori T, Atarashi R, Nishida N. (2019). El interferón tipo I protege las neuronas de los priones en modelos in vivo. Cerebro. 142 (4): 1035-

1050. https://pubmed.ncbi.nlm.nih.gov/30753318/

[19] Gao LP, Shi Q, Xiao K, Wang J, Zhou W, Chen C, Dong XP. (2019). La enfermedad genética de Creutzfeldt-Jakob con mutación E200K: análisis de las características clínicas, genéticas y de laboratorio de 30 pacientes chinos. Representante de ciencia; 9 (1): 1836. https://pubmed.ncbi.nlm.nih.gov/30

755683/

[20] Navid J, Day GS, Strain J, Perrin RJ, Bucelli RC, Dincer A, Wisch JK, Soleimani-Meigooni D, Morris JC, Benzinger TLS, Ances BM. (2019). Firma estructural de la enfermedad de Creutzfeldt-Jakob esporádica. Eur J Neurol. 26 (8):1037-1043.

https://pubmed.ncbi.nlm.nih.gov/30 735286/

[21] Aslam S, Fritz MA, Cordes L, Sabbagh MN. (2018). ¿Qué promete el diagnóstico de ECJ en un caso de demencia rápidamente progresiva? J Alzheimer Dis Parkinsonismo. 2018; 8 (5). https://pubmed.ncbi.nlm.nih.gov/30 733890/

[22] Zhao, Y.; Jaber, VR; Lukiw, WJ. (2022). SARS-CoV-2, COVID prolongado, enfermedad priónica y neurodegeneración. Frente. Neurociencias. 16, 1002770 https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins .2022.1002770/full

[23] Duyckaerts C, Clavaguera F, Potier MC. (2019) La hipótesis de la propagación similar a priones en la enfermedad de Alzheimer y Parkinson. Opinión actual Neurol. 32 (2): 266-271. https://pubmed.ncbi.nlm.nih.gov/30724769/

[24] Hayashi Y. (2019).requieren estudios patológicos y/o clínicos en casos atípicos de enfermedad de Creutzfeldt-Jakob descarga epileptiforme con lateralizada periódica. Psicogeriatría. Septiemb 2019; 19 (5): 519-520. de https://pubmed.ncbi.nlm.nih.gov/30 723966/

[25] Zanusso G, Mónaco S, Pocchiari M, et al. (2016). Pruebas avanzadas para el diagnóstico temprano y preciso de la enfermedad de Creutzfeldt-Jakob. Nat Rev Neurol. 12 (6): 325–333. doi: 10.1038/nrneurol.65

[26] Manix M, Kalakoti P, Henry M, et al. (2015). Enfermedad de Creutzfeldt-Jakob: criterios diagnósticos actualizados, algoritmo de tratamiento y utilidad de la biopsia cerebral. Enfoque de neurocirugía. 39 (5): E2. doi: 10.3171/2015.8.FOCUS15328

[27]Ladogana A, Puopolo M, Croes EA, Budka H, Jarius C, Collins S, Klug GM, Sutcliffe T, Giulivi A, Alperovitch A, Delasnerie-Laupretre N, Brandel JP, Poser S, Kretzschmar H, Rietveld I, Mitrova E, Cuesta Jde P, Martinez-Martin P, Glatzel M, Aguzzi A, Knight R, Ward H, Pocchiari M, van Duijn CM, Will RG, Zerr I. (2005) Mortalidad por enfermedad de Creutzfeldt-Jakob y

trastornos relacionados en Europa, Australia y Canadá. Neurología. 64 1586-91. https://pubmed.ncbi.nlm.nih.gov/15 883321/

[28] Klug GM, Wand H, Simpson M, Boyd A, Law M, Masters CL, Matěj R, Howley R, Farrell M, Breithaupt M, Zerr I, van Duijn C, Ibrahim-Verbaas C, Mackenzie J, Will RG, Brandel JP, Alperovitch A, Budka Η. Kovacs GG, Jansen Coulthard M, Collins SJ. (2013). La intensidad de la vigilancia de las enfermedades priónicas humanas predice la incidencia observada de Neurol la enfermedad. J Neurocirugía Psiquiatría. (12):1372-7.

https://pubmed.ncbi.nlm.nih.gov/23 965290/

[29] Brandel JP. Enfermedades encefalopatías priónicas 0 espongiformes transmisibles. Rev Med Interno. 2022 febrero; 43 (2): 106-115.

https://pubmed.ncbi.nlm.nih.gov/34 148672/

[30] Brandel JP. Enfermedades encefalopatías priónicas 0 espongiformes transmisibles. Rev Med Interno. 2022 febrero: 43 (2): 106-115.

https://pubmed.ncbi.nlm.nih.gov/34 148672/

[31] Lakhani, A., Norwood, M., Watling, DP, Zeeman, H. y Kendall, E. (2019). Uso del entorno natural para abordar el impacto psicosocial de la discapacidad neurológica: una revisión sistemática. Health Place, 55. 188 -201. https://doi.org/10.1016/j.health place.2018.12.002 .Return to ref 2019 in article

[32] McCarthy, ML, Dikmen, SS, Langlois, JA, Selassie, AW, Gu, JK (2006).Horner. MD Salud psicosocial autoinformada entre adultos lesión con cerebral traumática. Archives of **Physical** Medicine and Rehabilitation, 87 (7), 953-

961. https://doi.org/10.1016/j.apmr. 2006.03.007.

[33] Eiroa-Orosa, FJ (2020).bienestar Comprender el el contexto psicosocial en de problemas complejos ٧ multidimensionales. Revista Internacional de Investigación Ambiental y Salud Pública, 17 (16), Artículo 5937. https://doi.org/10.3390/ijerph

17165937.

[34] Fu, MR, Ridner, SH, Hu, SH, Stewart, BR, Cormier, JN y Armer, JM (2013). Impacto psicosocial del linfedema: una revisión sistemática de la literatura de 2004 2011. Psycho-Oncology, 22 (7),

1484. https://doi.org/10.1002/pon.3 201.

[35] Greenwell, K., Gray, WK, van Wersch, A., van Schaik, P., y Walker, R. (2015). Predictores del impacto psicosocial de ser cuidador de personas que viven con la enfermedad de Parkinson: una revisión sistemática. Parkinsonism & Related Disorders, 21 (1), 1-11. https://doi.org/10.1016/j.parkrel dis.2014.10.013.

[36] Culbertson, MG, Bennett, K., Kelly, CM, Sharp, L. y Cahir, C. determinantes (2020).Los psicosociales de la calidad de vida en sobrevivientes de cáncer de

mama: una revisión exploratoria. *BMC Cancer*, 20 (1), Artículo 948. https://doi.org/10.1186/s1288 5-020-07389-w.

[37] Wen, CC y Chu, SY (2020). Estrés parental síntomas У depresivos los cuidadores en familiares de niños con enfermedades genéticas: los efectos de mediación las estrategias de afrontamiento y la autoestima. Ci Ji Yi Xue Za Zhi, 32 (2), 181-185. https://doi.org/10.4103/tcmj.tc mj_35_19.

[38] Pelentsov, LJ, Fielder, AL y Esterman, AJ (2016a). Necesidades de cuidados de apoyo de los padres con un hijo con una enfermedad huerfana: un estudio descriptivo cualitativo. *Journal of Pediatric Nursing*, 31 (3), e207–e218. https://doi.org/10.1016/j.pedn_2015.10.022.

[39] Dellve, L., Samuelsson, L., Tallborn, A., Fasth, A., y Hallberg, LR (2006). Estrés y bienestar entre padres de niños con enfermedades huerfana: estudio de intervención prospectivo. *Journal of Advanced Nursing*, 53 (4), 392–402. https://doi.org/10.1111/j.1365-2648.2006.03736.x.

[40] Haukeland, YB, Fjermestad, KW, Mossige, S., y Vatne, TM (2015). Experiencias emocionales entre hermanos de niños con trastornos raros. *Revista de Psicología Pediátrica*, 40 (7), 712–720. https://doi.org/10.1093/jpepsy/jsv022.

