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Iterative technique for generating numerical on-axis holograms of
an object on tilted planes using Rayleigh-Sommerfeld
approximation
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Resumen Abstract:
Presentamos una nueva técnica iterativa basada en la propagación suce-
siva de campos utilizando la aproximación de Reyleigh-Sommerfeld
(RS), para generar por computadora el holograma de amplitud en el
eje de un objeto sobre un plano inclinado. La técnica fue validada
realizando reconstrucción óptica y computacional del holograma.

We present a new iterative technique based on successive field propaga-
tion using the Reyleigh-Sommerfeld (RS) approximation, to generate
by computer the amplitude on-axis hologram of an object on a tilted
plane. The technique was validated doing optical and computational
reconstruction of the hologram.
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1 Introduction

Holography is a technique that allows the recording of the am-
plitude and phase of an object. To achieve this recording, two
waves are needed, one reference and one object wave. The object
wave refers to the reference wave diffracted by the object. [1]
With the advance of the computers it was possible to carry out the
calculation of the diffraction the plane objects using numerical
techniques based on the scalar theory of diffraction. [2]
For years, the calculation of diffraction using numerical tech-
niques was limited to objects on parallel planes. Leseberg and
Frere propose a method for calculating Fresnel diffraction be-
tween tilted planes, using a Fourier transform, a coordinate trans-
formation, and multiplying by a quadratic phase factor. [3]
Matsushima et.al. propose a propagation method based on the
angular spectrum and a rotation in the Fourier domain. [4] Chen-
liang et.al. use the fractional Fourier transform to calculate the
propagation of an object on a tilted plane, after having performed
a back-propagation of the previously rotated frequency domain.
[5]
Other authors have been adding modifications to the method of
coordinate rotation in the frequency domain. [6, 7] Jun Wu et.al.
propose a method for calculating between tilted planes, using the
non-uniform Fourier transform.[8]

In this paper we present an iterative technique based on succes-
sive field propagation in the Reyleigh-Sommerfeld regime for
the construction of a virtual object on a non-tilted plane, of an
object that lies on a tilted plane. Once the virtual object was built
we generated its respective numerical on-axis hologram. Finally,
we present results numerical and optical reconstruction of the
hologram.

2 Method

Figure 1: Diffraction between tilted planes

It is well known that the field (U ) diffracted by some object is a
solution of the Helmholtz equation[1]:

(∇2 + k2)U = 0 (1)

© Autores; Licencia Universidad de Pamplona https://doi.org/10.24054/01204211.v2.n2.2021.962



BISTUA Rev. FCB, Vol. 19 (2), (2021)

Different ways of solving this equation have been proposed, and
each of them provides equivalent information in its spatial and
frequency domains. The traditional way to solve the Eq.(1) is
by using Green formalism, establishing boundary conditions on
diffraction surfaces. The RS is the most general solution known.
The solutions under the RS model are valid for propagation
distances (z) from the object, greater than the wavelength (λ)
of the incident wave. On the other hand, the solution using
the angular spectrum (AS) constitutes a reasonably ”simple”
solution by propagating the U field as a linear combination of
plane waves.
The two solutions mentioned (AS and RS) are equivalent, both
representing the scalar field over U(x, y, z) in terms of their
boundary values in U(x′, y′, 0) over the plane (x′, y′) or over the
frequency spectrum Û(fx, fy, 0), where fx, fy spatial frequen-
cies of these boundary conditions (fig.1). [9]
For the purpose of the present work, where we implement a
technique of successive propagation from the near field, the
representation of diffraction by means of the angular spectrum
provides a significant advantage, this is because we can use the
algorithm of the fast Fourier transform (FFT), so the computa-
tional speed of the method will be limited by the number of FFT
required.
The angular spectrum of a field U(x′, y′, 0) on the plane (x′, y′)
at a parallel plane (x, y) located at a distance z, is given by [10]:

U(x, y, z) ≡ P (U(x′, y′), z) = ...
... = F−1 {F {U(x′, y′, 0)}H(fx, fy; z)} (2)

Where P corresponds to the AS propagation function, and the
H free space transfer function is given by:

H(fx, fy; z) = exp

(
2πzj

λ

√
1− (λfx)2 − (λfy)2

)
(3)

2.1 Geometric considerations of the method
In fig.2 there is a discretized object t = t(mδx, nδy) of di-
mensions LX × LY , where LX = Mδx and LY = Nδy.
t represents a transmittance matrix on some plane. Taking
m = 0, 1, ...,M − 1 y n = 0, 1, ..., N − 1, then t will be ex-
pressed as:

t = tmn (4)

In this same fig.2 only the partitions on the axis x′ are shown
because the method was implemented for object plane inclined
with respect to the axis x′, as shown in (fig.1). In any case, the
method can be applied for any other situation of a tilted of the
object plane.
The method consists of 4 steps. The first one is to divide the
entire horizontal dimension of t into D sections of specific range
Sd. Step 2 consists in replacing such sections (Sd) in a three-
dimensional array T (fig.2).
In the third step, iterative propagation is performed (fig.3). Fi-
nally, the hologram is calculated and digital or optical reconstruc-
tion is performed(fig.4).

2.2 Step 1
The array t is divided into D sections of range Sd along the x
axis, naturally the division of M/D must result in an integer
value, so the first restriction:

MmodD = 0 (5)

Where mod refers to the M/D module. With the number of
divisions D established, an array T of dimensions M ×N ×D
is defined. We will express each element of T as:

T = Tmnd = (W )d,W ≡ Tmn (6)

With this notation, (W )d represents the dth matrix M ×N of the
array T . The range Sd is established as a function of the value of
D,Lx and d:

d
LX

D
≤ Sd < (d+ 1)

LX

D
(7)

d = 0, ..., D − 1

2.3 Step 2
Each substitution of the S sections of t is made on the corre-
sponding Sd section of each matrix (W )d, that is:

(W )d =

{
tmn, for m ∈ Sd.

1, otherwise.
(8)

In the fig.2 shows the replacement process for the case M = 9
and D = 3.

Figure 2: Arrangement T for the case D = 3

The value of dz → dz(M,D, δx,Ω), corresponding to the sepa-
ration between the steps , according to the fig.2 is:

dz = |Sd| tan (Ω) =
δxM

D
tan (Ω) (9)

Here is the second restriction based on the scalar theory of
diffraction in the RS regime, dz >> λ
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2.4 Step 3
Once the constraints and geometric considerations of the model
have been established, U−1 is defined as a constant amplitude
reference plane wave, so that the propagation is direct and is
governed under the following algorithm for case D = 3 (fig. 3):

1. Propagation of the object U0 = W0U−1 on the plane d = 0
at a distance dz, that is P0 = P (U0, dz)

2. Multiplication of P0W1 = U1 on the plane d = 1

3. Propagation of U1 at a distance dz, that is: P1 = P (U1, dz)

4. Multiplication of P1W2 = U2 on the plane d = 2

Figure 3: Iterative propagation and hologram recording for the case D = 3

In the case D = 3, U2 is defined as the virtual object. If we have
D divisions, then D − 1 propagations must be made, then we
can establish that the virtual object for D = 3 will be given by:

U2 = P (U1, dz)W2 = P (P (U0, dz)W1, dz)W2 = ...
... = P (P (U−1W0, dz)W1, dz)W2

(10)

For the general case of D divisions, the virtual object will be:

UD−1 = P (UD−i, dz)WD−1 (11)

UD−i = P (UD−i−1, dz)WD−i, for 2 ≤ i ≤ D (12)

2.5 Step 4
Once you have the virtual object UD−1, the hologram β (fig.3)
on the axis is calculated at a distance Z from the virtual object:

β = |βD−1 + U−1|2, βD−1 ≡ P (UD−1,Z) (13)

The computational reconstruction is performed in a similar way
to the process of step in section 2.3. An array R of dimensions

M × N is defined, as before, the elements of said array are
defined as R = Rmn. The process is based on diffraction β, D
times, and each of these diffractions is carried out at the distance
corresponding to the position of each (W )d reconstruction sub-
planes (See section 2.3). In fig.4 the method of composition of
the matrix R for any D is shown. The array R is composed as
follows:

Rmn = |P (β,Z + (D − 1− d)dz)|2mn, for m ∈ Sd (14)

Figure 4: Reconstruction method.

3 Experiment and results

We developed an iterative algorithm to calculate the amplitude
hologram of a two-dimensional image on a tilted plane. The vir-
tual objects of the images in fig.5 and their respective holograms
were calculated. Fig.6 shows the amplitude and phase of the
virtual object calculated for the object of fig.5a, and its respective
amplitude hologram (fig.6c). Fig.10 shows the computational
reconstruction of the hologram shown in fig.6c.

(a) (b)

Figure 5: Objects used. Object size: 60 × 40 pixels. Each object was
embedded in an arrangement of size 1024 × 768 pixels.

The hologram reconstruction algorithm is applied independently
to each section Sd, this is because each Sd corresponds to a re-
construction image plane located at a different Z.
On the other hand, the computational reconstruction of the holo-
gram generates contrast breaks between the borders of neighbor-
ing reconstruction image planes (see fig.7a).
We eliminate the contrast breaks using an algorithm that calcu-
lates the average intensity (Im) of each of the sections Sd in the
reconstruction plane. Then, one of the values of Im is taken as
Offset, and this Offset is added or subtracted to the remaining
sections Sd in the reconstruction plane (if Offset > Im, then add
Offset; if offset < Im, then subtract Offset).
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(a) (b)

(c)

Figure 6: (a) Virtual Object Amplitude. (b) Virtual Object Phase. (c) Numerical
on-axis hologram. Parameters used: δx = 19µm, D = 32, λ = 633nm,

Z = 0.5m, Ω = 28.5◦ and therefore dz = 13.7µm

(a)

(b)

Figure 7: Computational reconstruction. (a) Reconstruction without offset
correction. (b) Reconstruction with offset correction.

Fig.7 shows the computational reconstruction before and after
correcting the contrast breaks. Fig.8 shows a profile of the re-
construction before and after correcting the contrast breaks. In
the optical reconstruction no contrast breaks were observed (see
fig.10).
A diagram of the experimental setup used for optical hologram
reconstruction is shown in fig.9. This experimental arrange-
ment was constructed using a He-Ne laser (633nm wavelength),
a spatial light modulator (LCR2500, dimensions: 1024(H) ×
768(V )pixels, pixel size 19×19µm) and a video camera CMOS
technology (dimensions: 2592(H)× 1944(V ) pixels, pixel size
2× 2µm). For more details of the optical elements used, see the
references [11, 12].

Figure 8: Correction of a profile of the reconstruction plane, before and after
applying the Offset.

Figure 9: Experimental arrangement for optical reconstruction of the hologram
on a tilted plane.

Fig.10 shows the computational reconstruction (fig.10a) and
optics reconstruction (fig.10b).

(a) (b)

Figure 10: (a) Computational reconstruction. (b) Optical reconstruction.
Parameters used: δx = 19µm, D = 128, λ = 633nm, Z = 0.5m,

Ω = 28.5◦ and therefore dz = 13.7µm
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In the case of the virtual object, of the object in fig.5b, in the
reconstruction of its hologram, an optical test was performed
to show the effect of angular non-focus ∆Ω of the observation
plane during the reconstruction of the hologram. Fig.12 shows
an optical reconstruction sequence of the hologram. Fig.12a
corresponds to an angular non-focus ∆Ω = 35◦ and fig.12f
corresponds to the focused observation plane (∆Ω = 0◦).

(a) (b)

(c)

Figure 11: (a) Virtual Object Amplitude. (b) Virtual Object Phase. (c)
Numerical on-axis hologram. Parameters used: δx = 19µm, D = 128,
λ = 633nm, Z = 0.5m, Ω = 28.5◦ and therefore dz = 13.7µm

(a) (b)

(c) (d)

(e) (f)

Figure 12: Optical reconstructions of the hologram on unfocused tilted planes
to the tilted plane of correct focus. (a)∆Ω = 35◦. (b) ∆Ω = 25◦.

(c)∆Ω = 15◦. (d)∆Ω = 10◦. (e)∆Ω = 5◦. (f)∆Ω = 0◦

4 CONCLUSIONS

We proposed a new four-step holographic method to holographic
image projection on tilted planes. Computationally on-axis am-
plitude holograms were generated. We developed an iterative
algorithm of successive propagations, using the RS approxima-
tion to calculate the diffraction field on a x′y′ plane (virtual
object) of the transmittance of an object on a tilted plane that
have an angle Ω measured from the x′ axis. The technique was
validated by an optical and computational reconstruction of the
hologram. We identified the origin of the contrast breaks in
the numerically reconstructed image and proposed a correction
method. We showed results of the tolerance to angular non-
focus in optical reconstruction. An angular non-focus tolerance
< 5◦ was found (see fig.12). The computational cost of the
technique is determined by the number of FFT operations η, that
is ηO(uMN(log(M) + log(N))), with u being a temporary
variable.
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