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Abstract

This study investigates garnet nucleation and growth in
metamorphic rocks through integrated controlled serial sectioning,
high-resolution backscattered electron (BSE) imaging, and three-
dimensional reconstruction. Implementation of a systematic
material removal protocol significantly enhanced surface
reproducibility and analytical consistency relative to conventional
manual preparation methods. A dataset of 2,100 BSE images
enabled the generation of high-resolution mosaics via automated
image stitching. Digital processing and algorithmic segmentation
allowed quantitative characterization of particle size distributions
(PSD) across 50 consecutive layers. The resulting Gaussian PSD
indicates spatial and temporal variability in nucleation rates and
growth regimes, providing kinetic constraints on crystallization
processes within the Arquia Complex. The integration of advanced
imaging and computational modeling establishes a quantitative
petro-textural framework for 2D and 3D analysis of metamorphic
rocks, enabling rigorous assessment of grain size, morphology,
orientation proxies, and spatial distribution of mineral phases,
pores, and fractures. These parameters are critical for interpreting
metamorphic reactions and reconstructing tectonometamorphic
evolution. Our findings provide new quantitative constraints on
garnet crystallization mechanisms and their role in regional
metamorphic development.
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nucleation; growth; Arquia Complex.

Resumen

Este estudio aborda la nucleacion y el crecimiento del granate en
rocas metamorficas mediante la integracion de corte en serie
controlado, imagenologia de electrones retrodispersados (BSE) de
alta resolucion y  reconstruccion  tridimensional. La
implementaciéon de un protocolo sistematico de remociéon de
material mejord la reproducibilidad superficial y la consistencia
analitica frente a métodos manuales convencionales. Un total de
2.100 imagenes BSE permiti6 generar mosaicos de alta resolucion
mediante ensamblaje automatizado. El procesamiento digital y la
segmentacion algoritmica posibilitaron la cuantificacion de las
distribuciones de tamafio de particula (PSD) en 50 capas
consecutivas. La distribucién gaussiana obtenida sugiere
variabilidad espacio-temporal en las tasas de nucleacion y en los
regimenes de crecimiento, aportando restricciones cinéticas a los
procesos de cristalizacion en el Complejo de Arquia. La
integracion de imagenologia avanzada y modelado computacional
establece un marco petro-textural cuantitativo para el analisis 2D
y 3D de rocas metamorficas, permitiendo caracterizar tamaiio,
morfologia, orientacion y distribucion espacial de fases minerales,
poros y fracturas. Estos parametros son esenciales para interpretar
reacciones metamorficas y  reconstruir  trayectorias
tectonometamorficas. Los resultados proporcionan nuevas
restricciones cuantitativas sobre los mecanismos de cristalizacion
del granate y su papel en la evolucion metamorfica regional.

Palabras clave: distribucion del tamafio de cristales; granate; corte
en serie; nucleacion; crecimiento; Complejo de Arquia.

1. Introduction

Recent advancements in imaging technologies, along with
innovative computer processing and modeling techniques,
have transformed the landscape of petrology, enabling
detailed analysis of rock textures at both two-dimensional

(2D) and three-dimensional (3D) scales. These advancements
are crucial for understanding the geological history of
metamorphic rocks, as mineral textures provide essential
information about the processes that shaped them over time.
Understanding the intricate texture of metamorphic rocks is
important for unraveling the geological processes that have
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transformed them. Key parameters such as size, shape,
orientation, and spatial distribution of mineral phases, pores,
and fractures can now be quantified with precision [1-11].
However, despite these advancements, significant challenges
remain in accurately capturing the 3D architecture of
metamorphic minerals, particularly garnet, which is
fundamental for interpreting metamorphic conditions and
processes. The study of garnet's nucleation and growth within
metamorphic rocks is essential for understanding the
evolution of these geological formations. Garnet
porphyroblasts can provide valuable insights into the thermal
and pressure conditions experienced during metamorphism.
Despite previous research utilizing various imaging
techniques, there is an ongoing need for more systematic and
refined approaches that integrate both 2D and 3D analyses to
fully capture the complexities of mineral development in
metamorphic settings. This study specifically focuses on the
3D reconstruction of a garnet-bearing rock sample from the
Arquia Complex in the Colombian Andes. By employing a
combination of serial sectioning and backscattered electron
(BSE) imaging, we aim to produce a high-resolution dataset
that elucidates the nucleation and growth processes of garnet
under varying metamorphic conditions [12]. The particle size
distribution (PSD) of garnet serves as a critical parameter in
understanding crystallization kinetics, providing insights into
the timing and conditions of mineral formation [13-14]. In
this con-text, our research addresses a significant gap in the
existing literature by proposing a robust and detailed
methodology for specimen preparation and imaging, with an
emphasis on precision and reproducibility. Our protocols
include rigorous procedures for serial sectioning, image
acquisition, and processing, allowing for the creation of
comprehensive 3D models of garnet morphology. By
leveraging advanced software tools, we transform our dataset
into visually and quantitatively rich representations that
enable detailed exploration of garnet's textural evolution. In
addition to these methods, Furthermore, recent advancements
in crystallographic studies, such as the integration of infrared
digital holography, offer a promising complementary
technique [15]. This method can dynamically observe the
crystallization process and capture phase attributes of
minerals in real time, providing a more comprehensive
understanding of garnet's microstructure and deformation
mechanisms. Combining this with BSE imaging could offer
amore holistic view of garnet's crystallization behavior under
varying metamorphic conditions. In the following sections,
we first detail the experimental procedures used, including
specimen preparation, the detailed serial sectioning process,
and the methods employed for image acquisition and
analysis. Next, we present our results, with a particular focus
on the PSD of garnet and its implications for understanding
nucleation and growth dynamics. Finally, we discuss the
significance of our findings in the broader context of
metamorphic petrology, offering new perspectives on
garnet's textural evolution and its role in interpreting
metamorphic processes. This study represents a significant
advancement in the field of petrology by providing new
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insights into the complex processes governing garnet
nucleation and growth. By employing a multidimensional
analytical framework that integrates both 2D and 3D analysis
techniques, we aim to set a precedent for future research in
this domain and contribute to a deeper understanding of
metamorphic rocks and their formation histories [6,8,16].

2. Experimental Procedure

The experimental procedure for the preparation of a single
rock specimen, including serial sectioning, image
acquisition, and 3D reconstruction, is illustrated in Fig. 1.
The garnet-bearing rock sample was collected from the
Arquia Complex on the western flank of the Central
Cordillera, selecting an outcrop with a high concentration of
garnet within metabasic lithologies (garnet-bearing
amphibolites). Structural conditions, outcropping lithologies,
and mineralogical features were considered to ensure the
sample was representative of the typical high-pressure and
high-temperature metamorphic rocks of the complex, formed
through regional metamorphism of basaltic protoliths under
amphibolite facies conditions, producing garnet, amphibole,
and plagioclase.
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Figure 1. Experimental set up for rock specimen preparation, serial
sectioning, image acquisition and 3D reconstruction.

A microplug of the selected rock (8 mm in diameter and 15
mm in length) was embedded in a resin plug (30 mm in
diameter and 20 mm in length) and secured to a stainless-
steel holder that allows controlled displacement along a
stainless-steel apparatus equipped with a micrometric screw
(110 mm length, 35 mm thread diameter, 0.5 mm pitch), a 30
mm diameter locknut, and an assembly screw of the same
dimensions (Fig. la). The serial sectioning of the rock
specimen (Fig. 1b) was carried out at intervals of
approximately 0.01 mm (100 um), ensuring precise control
over section spacing. Following this, the specimen underwent



mechanical polishing using a BUEHLER MetaServ 3000
Variable Speed Grinder Polisher, using grinding papers of
grades 220, 400, 600, and 1200, followed by an alumina
solution to create smooth surfaces suitable for scanning
electron microscopy (SEM) analysis. After being mounted on
an aluminum pin and coated with a thin layer of carbon, the
specimen was analyzed using BSE imaging in a FEI FEG
ESEM QUANTA 650. The polished surfaces were sectioned
into fifty parallel layers, each producing 42 BSE images.
These images were then processed using Microsoft Image
Composite Editor software [17] to create a mosaic
representation (Fig. 1¢). For 3D reconstruction, an algorithm
was developed for the 2D processing of the garnets present
in the sample, using Matlab and the Digital Image Processing
Toolbox (Fig. 1d).

3. Results
3.1. Serial sectioning thickness

During serial sectioning, precise control of material removal
is achieved by regulating equipment speed, load, and
processing time (Fig. 2), improving upon earlier manual
techniques that commonly introduced polishing errors [18—
19]. To overcome these limitations, previous studies
developed mathematical models and control strategies to
maintain constant pressure and predict surface residual errors
[19-20]. Compared with these approaches, our results show
enhanced precision, efficiency, and reproducibility in the
polishing process. Serial sectioning generates successive
parallel slices, making section thickness a critical parameter.
An optimal thickness, typically between 50 and 100 um,
minimizes gaps during 3D reconstruction while reducing the
total number of sections required. Thinner sections increase
resolution but also the number of slices and potential
reconstruction noise, whereas thicker sections reduce
acquisition time but may obscure fine structural details. In
this study, a thickness of 100 um was selected as a balance
between resolution and efficiency. Section thickness also
influences PSD analysis, as thicker slices may average fine
features and affect particle size interpretation. Future studies
should carefully select the cutting plane to reduce
ambiguities caused by surfaces nearly parallel to slice planes
and improve reconstruction accuracy. Mechanical polishing
presents limitations compared to techniques such as FIB-
SEM, particularly in the number of sections produced. Here,
only 50 slices were prepared due to time constraints, whereas
FIB-SEM can generate up to 500 slices. However,
mechanical polishing is faster (1-4 h per slide), while FIB-
SEM requires longer processing times (30 min to several
hours per slide). Mechanical polishing is therefore suitable
for rapid surface preparation, whereas FIB-SEM is preferable
for micro- to nano-scale resolution despite longer processing
times. Polishing efficiency is further influenced by material
hardness, mineral composition, sample size, abrasive type,
rotational speed, applied pressure, and the use of multiple
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polishing stages, which together control surface quality and
preparation time.
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3.2. Image acquisition

For the analysis of the polished rock surface, 42 BSE images
of 1200 pixels each were acquired per section (Fig. 3),
resulting in a dataset of 2100 images across the 50 analyzed
layers. The initial vertical spacing between layers was 500
pm and was later refined to 250 pm to improve depth
resolution. This systematic acquisition strategy ensured
comprehensive coverage of the sample and enhanced the
characterization of its internal structure. In contrast, recent
SEM image acquisition studies emphasize advanced
approaches to improve resolution and spatial coverage,
including automated acquisition and image stitching
techniques [21-23], which generate large-format, high-
resolution datasets using multiple detector types [22,24],
reflecting a shift toward more sophisticated and data-
intensive imaging methodologies.
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Figure 3. BSE images (42) corresponding to the layer 50 of the serial
sectioning.

3.3. Image stitching

To generate overlapping BSE images and produce a high-
resolution mosaic (5300 pixels), Microsoft Image Composite
Editor (ICE) v1.4.4.0 for Windows was used [17]. This image
stitching technique combines individual images into a
seamless mosaic, resulting in stitched images measuring 1.65
mm x 1.24 mm, saved in TIFF format for detailed two-
dimensional visualization (Fig. 4), with additional examples
shown in Fig. 5. Microsoft ICE, developed by the Microsoft
Research Interactive Visual Media Group, has been
successfully applied in microscopy image integration for
surface analysis [25-26] and is freely available for non-



commercial use, although it does not support stitching images
from entirely different scenes. While the present study
focuses on 2D image mosaics, extending the analysis into 3D
would require transforming stacked 2D images into voxel-
based datasets using established reconstruction approaches
such as image segmentation [27-30], multi-view stereo
(MVS) methods [31-32], or depth map fusion techniques
[33]. These methods enable the generation of 3D models
from overlapping 2D images, allowing detailed analysis of
internal rock features, including mineral distribution,
porosity, microstructural variations, surface roughness, and
volumetric characteristics [34-36]. Although beyond the
scope of this study, integrating 3D reconstruction algorithms
with the image stitching workflow represents a promising
direction for future work, enabling comprehensive 2D and
3D analyses of rock microstructures.

Figure 5. High-resolution mosaics of BSE images corresponding to the
analyzed layers of the gar-net-bearing metamorphic rock.

3.4. Data storage and image digitization

The stitched image mosaics were stored for subsequent
automated digitization using software based on image
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resolution and gray-level threshold parameters. Three-
dimensional  visualization of rock textures and
microstructures was achieved by stacking 2D serial sections
through computer-based reconstruction algorithms [37]. The
achievable resolution is constrained by the spacing between
sections, which can be reduced to a few microns using serial
sectioning jigs [3]. For isotropic voxel resolution, section
spacing was matched to the image resolution [38], allowing
comprehensive analysis of the rock volume. In coarse-
grained samples, lower resolution in the grinding direction
can be applied to increase sampled volume and reduce dataset
size [39]. Although serial sectioning by grinding and
polishing is time-consuming, it can produce results
comparable to low-resolution X-ray tomography [3]. BSE
images were used to capture mineralogical variations across
layers, with garnet isolated in each section using the Matlab
Image Processing Toolbox. The 2D processing workflow
consisted of image alignment, segmentation, and noise
removal with true-color parameterization. Recent advances
in 3D voxel reconstruction include algorithms such as back
projection, filtered back projection, inverse Radon transform,
marching cubes, ray casting, interpolation, and view-based
reconstruction, which have been evaluated for accuracy,
computational efficiency, and dimensional integrity [40—45].
In geological applications, these methods are widely used in
CT and pCT to visualize porosity, fractures, and internal
structures. In this study, a Matlab-based voxel transformation
approach was applied to ensure accurate alignment and
scaling in all three dimensions, minimizing distortions
reported in lower-resolution reconstructions. This approach
aligns with current trends in 3D reconstruction research and
highlights potential improvements in volumetric data
processing for geological specimens.

3.4.1. Alignment of the stitched images

Image registration is a fundamental process for aligning
images from multiple datasets and constitutes the basis for
advanced image analysis, enabling the generation of
composite views, improvement of signal-to-noise ratios, and
extraction of information not evident in single images [46].
According to Patil et al. [47], image registration comprises
four core components: (1) the feature set, which includes
image characteristics such as intensity, contours, and texture;
(2) the similarity measure, which quantifies the
correspondence between image features; (3) the search set,
consisting of possible transformations such as translation,
rotation, and scaling; and (4) the search strategy, which
defines the algorithm used to select optimal transformations.
Beyond 2D alignment, image registration is closely linked to
voxel transformation, a key step in converting 2D image
stacks into 3D datasets for dimensional analysis. Techniques
such as trilinear and cubic interpolation, as well as machine
learning—based approaches, are commonly employed to
improve reconstruction accuracy and visual quality.
Comparative evaluation of these methods provides insight
into their effects on alignment precision and computational



efficiency. Overall, effective image registration relies on the
integrated application of these components and
methodologies, and its continued development is supported
by interdisciplinary research across fields such as medical
imaging, remote sensing, and materials science, underscoring
its broad relevance and importance in image analysis.

3.4.2. Image segmentation

Image segmentation is a critical step in visual data analysis,
enabling the extraction of meaningful information from
complex images and playing a key role in fields such as
materials science, biology, and medicine. Despite advances
in segmentation techniques, the process remains challenging
due to limitations in image resolution and variability
introduced by subjective human interpretation [48]. Different
imaging modalities impose distinct resolution constraints and
may generate artifacts or noise that complicate feature
identification, while observer-dependent decisions can lead
to inconsistencies and reduced reproducibility [49]. These
challenges highlight the need for automated and objective
segmentation approaches. Recent advances in machine
learning, particularly convolutional neural networks (CNNs),
have shown strong potential for improving segmentation
accuracy and consistency compared to traditional threshold-
based methods [50]. The accuracy of segmentation is also
influenced by voxel transformation algorithms used to
convert 2D image stacks into 3D datasets, as these
transformations affect feature definition and continuity. In
practice, segmentation involves separating objects of interest
from the background, with thresholding being a simple and
effective method when features exhibit distinct intensity
contrasts, such as garnets in rock specimens. This approach
converts grayscale images into binary images by assigning
pixels to either object or background based on an intensity
threshold (Fig. 6), though its success depends on image
contrast, noise levels, and appropriate threshold selection.

Figure 6. BSE image umbralization. On the left, image of the thresholded
layer 50. On the right of the Toolbox visualization, realizing the
umbralization.

3.4.3. Elimination of noise and parameterization of true color

Matlab, a high-level programming language with strong
capabilities for matrix manipulation, was used to implement
advanced algorithms for noise reduction in BSE images, a
critical step for improving image quality prior to
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segmentation and 3D reconstruction [51]. Noise and artifacts
can significantly affect image clarity and reconstruction
accuracy,  requiring  robust  filtering strategies.
Regularization-based optimization approaches have been
shown to effectively reduce noise and improve 3D
reconstruction accuracy [52]. In this study, edge-preserving
denoising algorithms were applied to BSE images to smooth
intra-region variability while maintaining sharp mineral
boundaries [53—-54]. These filters enhance edge definition
with minimal distortion, which is essential for accurate
segmentation. Matlab also enabled precise parameterization
of garnet color attributes, facilitating reliable identification
and representation of mineralogical features. The resulting
noise-reduced images improved segmentation performance
and voxel transformation, leading to more accurate 3D
reconstructions, as illustrated in Fig. 7. Overall, the
application of Matlab-based noise reduction techniques
significantly enhanced image quality and ensured reliable
visualization and interpretation of rock microstructures.

Figure 7. Visualization of Matlab Toolbox in the elimination of noise and
parameterization of the true color, in the left layer 50 with the
parameterization results and without noise.

After measuring the mineral particles, including the garnets
visible in each layer, the next step involved assessing each
individual grain. For this purpose, a specialized Matlab code
named "measures" was developed, which facilitates the
measurement of the maxi-mum and minimum dimensions of
each garnet in micrometers. The results obtained from this
analysis are automatically recorded in an Excel file, as
illustrated in Fig. 8. Subsequently, the lengths of the
maximum and minimum axes of 65 mineral particles were
analyzed, as detailed in Table 1. It is important to highlight
that certain particles were excluded from this analysis due to
their positioning at the edges of the layer, which rendered
their true sizes difficult to determine accurately. The
estimated measurement error is re-ported to be within + 0.01
pum, emphasizing the precision of the measurement process.
To further contextualize these findings, it is essential to
compare them with similar studies conducted by other
researchers. This comparative analysis not only aids in
validating our measurements but also contributes to a
comprehensive understanding of the measurement process
and its associated uncertainties. By examining the results
alongside existing literature, we can better appreciate the
variations and consistencies in mineral grain measurements,
thereby enhancing the overall robustness of our findings.
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Figure 8. Measurement of the maximum and minimum axes in the garnet
particles by means of Image Processing Toolbox.

Table 1. Measures of maximum and minimum axis in particles of garnet

3.5. 3D visualization

Serial sectioning was performed by cutting 50 parallel layers,
with an initial spacing of 500 um between layers 1 and 10.
To improve garnet particle retention, the spacing was reduced
to 250 um between layers 11 and 50 (Fig. 9), minimizing the
loss of structural information during sectioning. To support
3D reconstruction of the garnet PSD while optimizing
memory usage, the open-source software ImagelJ was
employed. ImageJ, a public-domain image processing
program developed at the U.S. National Institutes of Health,
has been widely used in similar 3D mineral reconstruction
studies [50], although variations in sectioning parameters
may influence particle preservation. Figure 10 shows the
miniplug rock volume and the resulting 3D spatial
distribution of garnet, representing particle measurements
across the entire sample. The reconstructed volume
corresponds to the 50 serial sections, with a total cut depth of
5.5 mm. This approach enabled a comprehensive
visualization of garnet spatial distribution within the sample,
providing insight into its internal arrangement and textural
characteristics.
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Figure 9. Stack of the high-resolution mosaics of BSE images
corresponding to the analyzed layers of the garnet-bearing metamorphic
rock.

Figure 10. 3D visualization of corresponding to the analyzed layers of the
garet-bearing metamorphic rock.

3.6. Particle size distributions (PSDs)

Petrographic information has significant quantitative links
with the crystallization kinetics, with PSDs serving as
essential complements to laboratory kinetic studies. Previous
research on metamorphic rocks, such as that by Marsh [13],
Cashman and Ferry [14], and Waters and Lovegrove [55],
highlights the critical role of PSDs interpretation in
understanding the nucleation and growth conditions of
mineral phases. Such interpretations provide valuable
insights into various factors, including nucleation and growth
rates, growth durations, and heat fluxes during
metamorphism. In this study, we explore the PSD of garnet
within a metamorphic rock of the Arquia Complex, aiming to
enhance our understanding of its dynamic history. To
calculate the PSD, we measured both the major and minor
axes of 65 garnet particles across 50 sectioned layers, using
BSE image mosaics. According to Higgins [56-57], the
intersection length statistically corresponds to the actual
particle length, while the intersection width approximates its



intermediate dimension. In this context, the major axis of the
particle is considered the actual particle size, determined by
the maximum value observed in each layer. The measured
axis values range from 494 to 2752 um, so we selected a size
range of 300 um, generating five size classes. To model the
PSD of garnets from the Arquia Complex, exponential,
Gaussian, and hyperbolic tangent functions were evaluated.
The observed PSD exhibits a clear asymmetry, with early-
nucleated garnets reaching larger sizes and later-nucleated
ones remaining smaller. This pattern is not adequately
captured by Gaussian distributions, which assume symmetry,
nor by exponential functions, which predict a monotonic
decay without reflecting the accumulation of intermediate-
sized garnets. In contrast, the hyperbolic tangent function:
n(L) = notanh (L-L/b), provides a better fit to the observed
PSD, reflecting both the initial high nucleation rate and the
growth competition among crystals. The hyperbolic tangent
shape allows modeling how early-nucleated garnets grow
faster and attain larger sizes, while later-nucleated garnets are
limited by available space and resources, producing a tail of
smaller particles. Physically, this behavior is associated with
spatial and temporal variations in nucleation and growth
during regional metamorphism, where temperature and
pressure conditions evolve progressively, leading to a non-
uniform crystallization history. Therefore, the choice of the
hyperbolic tangent model is justified not only statistically but
also physically, as it integrates the kinetic history of garnet
nucleation and growth observed in the Arquia Complex. To
ensure accurate size determination, we compared the
stereological method applied to thin sections and digital
photographs of 2D data with the actual values obtained
through serial sectioning. This meticulous approach
strengthens the reliability and validity of our results,
improving the quality of our analysis and contributing to a
deeper under-standing of garnet's dynamic history within the
metamorphic rocks of the Arquia Complex. To generate the
size frequency histogram, we calculated n, which is
determined by dividing the number of data points in each
specified range by the set interval. This leads to NV,
calculated by dividing n by the rock sample volume, thus
creating the y-axis of the histogram. The selected ranges are
plotted on the x-axis. The volume of the plug is calculated
using the Eq. (1):

V=rrh (1)
Where, 7 is a known value, r is the radius of the rock plug
and £ is derived from the working distances found under
SEM conditions and the BSE images. Quantifying texture
can be achieved by measuring the number of particles per unit
rock volume within a specific size range (4L). This
quantification is expressed as the population density n(L),
where L denotes particle size. Achieving equilibrium requires
knowing the particle density as a function of size. However,
due to challenges in making precise size measurements
within small 4L ranges, it is more practical and insightful to
work with a cumulative distribution derived from the
histogram function n(L). This cumulative distribution
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provides a comprehensive view of the PSD within the rock
sample, facilitating a deeper understanding of its textural
characteristics.

To analyze grain growth rates, we have also included a
temporal component in the PSD interpretation. Eq. (2)
represents the numerical density, which can be useful for
understanding the PSD of garnets in different types of
metamorphic rocks, providing information on metamorphic
conditions.

dN(L)

dL )

Where, N(L) is a function describing the total number of
particles with size equal to or smaller than L (i.e., numbers of
particles per unit volume). N(L) is also a simpler and more
reliable measure, in which a progressive sum is formed,
providing a very stable series, from which information about
any choice of 4L can be derived.
From Eq. (1), the population density of particles can be
obtained through Eq. (3), which describes the population
density n(L) derived from an infinite number of intervals such
that AL approaches zero.

n(L) =

_dAN(L)

n(L) 1L

3)

Where, n(L) is the fundamental variable of PSDs and n is the
number of particles in a given size class and per unit volume.
The garnet particles within the metamorphic rock under
analysis show a wide range of sizes, effectively illustrated
through histograms (Fig. 11). As noted by Waters and
Lovegrove [55], practical measurements of particle diameters
involve sections through the rock, requiring consideration
that not all particles are cut through their center. Histograms
often show a bell-shaped pattern, commonly known as a
"normal distribution", where points are equally likely to
occur on both sides of the mean. A relevant observation is
that these histograms can be interpreted, from right to left, as
a representation of the nucleation rate over time. Particles of
garnet that nucleated in early stages tend to have grown to
larger sizes, while later stages show a decreasing nucleation
rate, resulting in smaller particle sizes, which suggests that
particle growth in the metamorphic system was influenced by
fluctuations in nucleation rates. This behavior of the PSD
resembles more of a hyperbolic tangent function (tanh),
rather than an exponential function. This shape can be
interpreted as a transition in the growth regime, reflecting
how environmental factors such as temperature and pressure
influence crystal development over time. Although this study
has applied a fitting model based on a hyperbolic tangent
function to represent the PSD of garnet in the metamorphic
rocks of the Arquia Complex, it is important to acknowledge
that Gaussian distributions, while useful, may not always
fully capture the complexities of mineral nucleation and
growth processes. Phenomena such as Ostwald ripening or
heterogeneous nucleation conditions could lead to significant
deviations from a standard Gaussian fit, especially in samples



affected by temperature or composition gradients. However,
this study should be considered preliminary, and many of
these aspects are be-yond the scope of this work due to
limitations in data resolution and the natural variability of
metamorphic systems. Future research could focus on
incorporating these factors to achieve a more detailed and
accurate interpretation of the dynamic history of garnet
nucleation and growth in metamorphic environments.
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Figure 11. Frequency histograms with respect to (a) particles per area unit
(NA) and (b) particles per volume unit (NV).

The shape of the PSD is primarily controlled by temporal
changes in nucleation rate, as highlighted by Waters and
Lovegrove [55]. The right-hand tail of the distribution, often
resembling an exponential function, reflects the initial
acceleration of nucleation and the rapid formation of smaller
garnet crystals. Grain growth rates can be quantified by
comparing observed garnet growth with theoretical
nucleation and growth models. Figure 12a shows the
cumulative frequency, featuring an inflection point that may
indicate a transition in growth regime influenced by
environmental factors such as temperature and pressure.
Alternatively, plotting the natural logarithm of population
density (n) against particle size (L) linearizes the PSD,
facilitating comparison and analysis, as applied in fields such
as chemical engineering [16] and igneous petrology [5,13—
14]. This approach aids in interpreting the statistical
distribution of particle sizes and the dynamics of crystal
growth. If we interpret the results from Fig. 12a as a
hyperbolic tangent, its derivative is cosh 2, which visually fits
the experimental data much better. Figure 12b shows the
relationship between /n(n) and L, which may not be entirely
linear due to the nature of the experimental data. These data
fit better to a model based on the hyperbolic tangent.
Although this relationship is still useful, it should not be
extrapolated linearly as if it were an exponential function.
The interpretation of garnet nucleation and growth in this
context should be revisited based on the hyperbolic tangent
model, as it better reflects the experimental data obtained.
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Figure 12. (a) Cumulative frequency. (b) In(n) vs. L diagram.

BISTUA Rev. FCB, Vol. 23 (2), (2025)

The revised model now incorporates a comparison with
growth rates derived from theoretical nucleation models,
enhancing the analysis of crystallization dynamics. We also
fit the experimental data to the hyperbolic tangent function to
better represent the observed nucleation and growth patterns.
However, the observed behavior on the right-hand side of the
PSD of the analyzed garnet-bearing amphibolite presents an
approximate linear trend, which has been characterized by an
exponential equation, as proposed by Cashman and Ferry
[14] and Waters and Lovegrove [55]. This exponential
model, commonly ex-pressed as Eq. (4), effectively describes
the relationship between particle size and population density,
providing key insights into the nucleation and growth
processes affecting garnet formation within the rock sample.
(4) n= noe’b’“

Where r is the population density, n° is the intercept at L =0,
b is a constant that de-scribes the slope of the linear graph,
and L is the particle size. However, instead of using an
exponential model as in Eq. (4), the data obtained suggest
that the PSD follows a behavior that fits better with a
hyperbolic tangent, in the form N(L) ~ tanh[(L-L,)/b]. This
function has a derivative that approximates cosh?[( L-L,)/b],
providing a better visual and mathematical description of the
observed experimental data. This improved adjustment in the
interpretation of the PSD provides a more accurate and robust
insight into the dynamic his-tory of nucleation and growth of
garnet in the metamorphic rocks of the Arquia Complex. The
exponential relationship, expressed Eq. (4), commonly used
in similar studies, is no longer directly applicable in this case.
Instead, the hyperbolic form (Eq. (5)) provides a more
accurate description of the observed distribution:

n =n°tanh[(l’7é[’ﬂ)] )

Where no is the initial particle density and b is a parameter
that describes the slope of the graph. This formula provides a
better fit to the behavior observed in the experimental data.
The calculations derived from this model not only provide a
better representation of garnet nucleation and growth, but
also offer a tool for reconstructing the thermal and dynamic
history of the studied rocks.

The total number of particles (N7) in the garnet-bearing
metamorphic rock can be deteorénined by Eq. (6).

noe *FdL = o
0 b ®
Where, L is equivalent to the zero moment of the distribution.
Eq. (7) represents the total leno%th of the particles.
mq = Lp = / LngetdL = o

0 b2 (7)
The average size of the particles (L) can be determined from
Egs. (6) and (7) by Eq. (8), which represents the average
length of particles.

m():NT:

- Lp 1

[ ==L _-2
Nr b 8)
From Fig. 12b, the values of b and no calculated as -0.0024
um™' and -26.707um™!, respectively, which can be replaced in



the exponential equation as n = -26.7070e"%9%# to solve Egs.
(6), (7) and (8). The values obtained for Nr, Lr and L were
10994.81 pm (1.10 cm), 4526325.34 pm (452.63 cm) and
411.68 pm (0.04 cm), respectively.

These equations provide a quantitative view of the PSD of
garnets in metamorphic rocks. The information derived from
these calculations is invaluable for reconstructing the
geological history of the area, understanding the
metamorphic processes that occurred, and evaluating the
quality and potential of the mineral resources present in the
rock. Additionally, they contribute to the modeling of
geological processes and may have implications in fields
such as petrology and economic geology.

3.7. Nucleation and growth rates and growth times

The PSD reveals not only the range of particle sizes within a
rock sample but also provides insights into crystallization
timescales, which are controlled by growth (G) and
nucleation (J) rates. By analyzing the PSD, researchers can
infer the duration of crystallization and the thermal and
chemical conditions during rock formation. The slope of the
cumulative distribution, expressed as population density (n,
number per volume per size range), serves as a key indicator
of particle distribution [58]. Typically, distributions show a
linear segment followed by a bell-shaped curve near the y-
axis, with the slope and vertical intercept reflecting the
dynamics of nucleation and growth. Steeper slopes suggest
rapid nucleation relative to growth, whereas gentler slopes
indicate prolonged growth or lower nucleation rates. These
parameters are essential for interpreting the crystallization
history and reconstructing the environmental conditions that
influenced mineral formation, offering a deeper
understanding of the rock's petrogenetic evolution.
According to Blundy and Cashman [58] a PSD relates the
average rates of nucleation (J) and growth (G). It is assumed
that the dominant size (dL) is a consequence of the stable
particle growth at an appropriate time (¢), then dL = G,, where
t is the effective crystallization time. The nucleation rate is
given by J = dNv/dt, where Nv is the number of particles per
unit volume. In turn, the nucleation rate is related to the
growth rate J = n°G, where n° is the number of nucleated
particle density (intercept with zero), so that the time can be
determined for any distribution if knows G. We can also
define an average growth time (7) as a function of L, and a
linear average growth rate G.

The average growth time and nucleation rate are given by
Egs. (9) and (10), respectively.

;L
e ©)

g Nr
t (10)

Therefore, a linear particle size plot encapsulates measurable
parameters that can be directly correlated with particle
nucleation rates, growth rates, and growth times. As depicted
in Eq. (9), there exists a dependence between the parameters
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of ¢ (growth time) and G (growth rate). Consequently, it
becomes imperative to ascertain certain parameters to de-rive
the average nucleation rate. Cashman and Ferry [14]
introduce Eq. (11), which delineates the growth rate based on
variations in mass over time. This equation serves as a
fundamental tool in quantifying the growth dynamics of
particles within the system under examination.

dm  KAS(T - T.,)
dt RT (11)

Where dm/dt is the mass transfer rate in moles per square
centimeter of surface per second, K is a rate constant, A4S is
the enthalpy of the reaction, (7-T.4) = AT corresponds to the
excess of the reaction, R is the gas content in K-'mol"! and T
is the temperature of the reaction. According to Walther and
Wood (1984), the rate constant K is influenced by
temperature and composition across various mineral species.
Their findings suggest that, within experimental uncertainty
(approximately half the order of magnitude), a wide array of
minerals exhibit similar rates at any given temperature.
Consequently, at elevated temperatures, heterogeneous
reactions persist with rate constants approximately governed
by Eq. (12), also known as the velocity constant. This
observation underscores the importance of temperature and
composition in dictating reaction kinetics and highlights the
generalizability of rate constants across diverse mineral
species under certain conditions.

-2
logK = —900 -6.89
T (12)

Where T is in °K and the rate constant has been converted
from mole cm™s! to atom grams of oxygen cms. Eq. (12)
appears to be maintained for the most relevant metamorphic
fluid compositions and for all minerals for which data are
available. Finding the velocity constant and dm/dt only
equalizes Eq. (11) with respect to the length. Eq. (13)
represents the linear growth rate.

dr  dm/dt
dt w (13)
Where r is the radius of the particle and W is the
normalization of the equation, i.e., the atom-grams of oxygen
per cm®. In this way, when the value of dr/dt is known, the
aver-age growth rate G is being obtained and the growth
times and the average nucleation rates can be obtained.
Standardization is carried out by Eq. (14), which represents
the number of atom grams of oxygen and also represents the
volume of a sphere, which associates with a spherical
behavior of the mineral and w the atom-grams of oxygen
present in the chemical formula of garnet.
w= %r?’W
3 (14)
Considering Egs. (11), (12), (13) and (14), it is possible to
determine the average nucleation rate, the time of growth and
the average growth rate. In order to find the velocity constant,
the temperature value of 600 °C is taken, according to the



metamorphic facies of Barker [59], it is necessary that the
temperature value is expressed in °K. Replacing in equation
11, a value of K = 6.73x107!! atom gram of oxygen/cm?s™! is
obtained. To determine the values of the mass transfer rate
dm/dt, it is necessary to take into account that K = 6.73x10!"!
gram atom of oxygen per cm -2 s\, 4S = unknown value.
Therefore, Walther and Wood (1984) propose: 4S5 = 1
cal/mol™! °C for a lower limit and 45 = 20 cal/mol™! °C for an
upper limit; (7-T,,) =A4T=1°C; R=1.9872 cal. Mol. K; T
=873 °K. AT was taken as 1 °C, the lower limits for AT were
obtained from warming rates of 1°/104-1°/106 years
(warming rates suggested by Walther and Wood [60]).
Replacing in Eq. (11): dm/dt = 7.76x107"® oxygen gram
atom/cm’s

From Eq. (14) W is cleared, which is the normalization of the
garnet equation to units of grams of oxygen/cm3, so that the
Eq. (15) would be:

3w

(471 (15)
Where W are the atom-grams of oxygen present in the particle
of garnet on the inverse of the volume of the particle. To
obtain this value it is necessary to know the crystallography
of the garnet. The chemical composition of garnets is
variable. We substitute x in the equation for the value of the
temperature and obtain the value of ¢ in Angstroms. For a
temperature of 873 °K, a = 11.58 A. With the parameter a =
ritis possible to calculate the volume of the almandine garnet
particle, starting from the concept of the Eq. (16) where a
spherical volume is assumed for the garnet, according to
Walther and Wood [60].

W=

=24z
3 (16)
V=6.5x10"!
Taking a second approximation according to the

crystallization of the garnet as a do-decahedron cubic system,
the dodecahedron volume is expressed by Eq. (17) as:

16 V3 5
V=16 g @ (17)
V=4.8x10"!
The volume values of the mineral fall within an acceptable
range for the objectives of this study. To proceed with the
calculation of the volume of the dodecahedron, considering
the crystalline structure of the mineral, it is necessary to
determine the number of gram atoms present in the mineral.
In order to replace in Eq. (15) for normalization, we must first
determine the number of gram atoms present in the mineral.
This can be calculated by di-viding the atomic weight of
oxygen by Avogadro's number. Then, we can substitute this
value into Eq. (18).
2.66x10-%
4.77x102! (18)
With the value obtained from normalization is replaced in Eq.

(19).

dr _ 7.76x10°" atom-gram of oxygen/cm’s

dt 0.006 atom-gram of oxygen/cm?

W= =0.006

=1.4x10"1% cm/s

19)

>
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which corresponds to the linear average growth rate G. With
the values of G and [ (average size of the particles), we
obtain the growth time contemplated in Eq. (9) and then the
average nucleation rate given in Eq. (10), with Nras depicted
in Table 2. Then, the average values obtained for J, G and ¢
can be calculated. By integrating these equations, researchers
can derive average nucleation rates, growth times, and
growth rates, which are fundamental for reconstructing the
crystallization history of garnet in metamorphic rocks.
Understanding these parameters allows geo-scientists to
make inferences about the conditions of metamorphism, such
as pressure, temperature, and the fluid composition of the
environment during rock formation. This comprehensive
approach not only elucidates the processes that led to garnet
formation but also aids in predicting how similar minerals
may behave under varying geological conditions, thereby
enhancing our overall understanding of metamorphic
petrology.

Table 2. Data of nucleation and growth rates and growth times.

Teq |[L=1b G =drldt Ny t n, J
cm/s years em™ s
oc m em em’fs
4S8 =1cll’C [AS =20 cal"C 4S8 =1cl/’C ]AS =20 cal°C |45 =20 cal’C
600 4.12x107 | 6.99x10™* | 1.4x10™" L1 186.74 | 9.34 2.67x10° _|3.73x10°

3.8 Metamorphic implications and P-T context

The particle size distribution and growth history of garnets in
the Arquia Complex provide direct insights into the
metamorphic evolution of the region. The coexistence of
early-formed large garnets and later-formed smaller ones
indicates prolonged nucleation under progressively changing
conditions, consistent with regional amphibolite-facies
metamorphism of basaltic protoliths. The larger garnets
likely crystallized during peak metamorphic conditions,
reflecting high temperatures and pressures, whereas smaller
garnets formed during cooling or decompression stages,
highlighting a dynamic P-T path. Moreover, the variation in
garnet size and growth rates reflects heterogeneous
nucleation kinetics, implying that metamorphic reactions
were influenced by localized differences in chemical
potential, fluid availability, and strain distribution. This
supports a model of progressive metamorphism within a
geodynamically active orogenic belt, where tectonic
processes such as crustal thickening, exhumation, and shear
zone activity modulated garnet crystallization. From a
geodynamic perspective, the PSD analysis suggests that
garnet growth is sensitive to the thermal gradient and
deformation  history, providing a link between
microstructural textures and regional tectonics. Thus, the
detailed 3D reconstruction and PSD modeling not only
quantify crystallization kinetics but also serve as petrological
proxies for reconstructing P—T-t paths and understanding
metamorphic processes within the Colombian Andes. In this
way, garnet textures become powerful indicators of orogenic
evolution, thermal regimes, and the interplay between
metamorphism and deformation in the Arquia Complex.



3.9. Experimental uncertainties and error analysis

The precision and reliability of our garnet PSD and growth
measurements are inherently linked to experimental
limitations, which must be carefully considered to
contextualize the results. Key sources of uncertainty include:
Spatial resolution of serial sections: Sections were cut at
100 pm thickness, with initial layer spacing of 500 um
reduced to 250 um for layers 11-50. While this spacing
ensures retention of garnet particles, the z-axis resolution is
coarser than the xy-plane resolution (~1.65 mm x 1.24 mm
mosaics), potentially averaging fine microstructural details.
Thinner sections would improve resolution but increase
noise, acquisition time, and computational demand.

Image acquisition and stitching: BSE imaging produces high-
resolution mosaics; however, minor misalignments during
stitching or slight distortions from mechanical polishing may
introduce systematic errors in particle boundary definition.
Edge effects, particularly for garnets at section borders,
contribute to underestimation or overestimation of true
particle dimensions.

Segmentation and noise reduction: Threshold-based
segmentation and edge-preserving denoising algorithms in
MATLAB provide reproducible identification of garnet
boundaries. Nevertheless, variations in image contrast,
residual noise, or overlapping grains can cause minor
inaccuracies in size measurements.

Measurement reproducibility: Maximum and minimum axes
were measured for 65 garnets, with an estimated error of
+0.01 um. Although highly precise, this error does not
account for potential biases from particle orientation relative
to the cutting plane or partial particle truncation.

Volume estimation and shape assumptions: Particle volumes
were approximated as spheres or cubic dodecahedra. Real
garnet shapes deviate from these idealized geometries,
introducing additional uncertainty in mass transfer and
growth rate calculations.

In general, while these uncertainties may slightly affect
absolute PSD values and growth rates, the systematic
approach, precise sectioning, controlled polishing, automated
image processing, and 3D reconstruction, minimizes random
errors and ensures that observed trends in nucleation timing,
size distribution, and metamorphic implications are robust
and reproducible.

4. Discussion

The methodology employed in this study for rock sample
preparation, serial sectioning, image acquisition, and 3D
reconstruction has proven to be highly effective, achieving
significant advancements compared to previous techniques.
Below, various key aspects of this research are detailed,
organized into subsections.

4.1. Advances in sample preparation and sectioning
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Compared to previous methods documented by Terrell and
Higgs [18] and Liao et al. [19], where significant polishing
errors were observed, our approach distinguishes itself
through a more precise control of parameters such as speed
and load during the polishing process, resulting in more
accurate and uniform sections. When choosing between
mechanical polishing and other polishing methods, such as
ionic polishing, the decision largely depends on the material
being processed and the level of precision required.
Mechanical polishing is a widely used and cost-effective
method for many applications, it may not provide the ultra-
smooth, uniform surface needed for high-precision analysis,
especially in scientific research [61-62], whereas ionic
polishing offers a much more controlled and fine finish,
making it ideal for preparing samples for electron
microscopy and other high-resolution techniques [63-65].
Table 3 shows is a detailed comparison of the key differences
between these two polishing methods, highlighting their
respective ad-vantages and limitations.

Table 3. Differences between mechanical polishing and ionic polishing.
Characteristic Mechanical Polishing. lon Polishing

Uses physical abrasives to remove layers from the
rack surface.

Bombards the surface with accelerated ions (such as argon,

Process
gallium, or baron) to polish in a controlled manner.

lon polishing systems like focused ion beam scanning electron
microscape {FIB-SEM), gatan precision ion polishing system
(Gatan PIPS), and other ion-based sample preparation systems.

Palishing machines
alils.

i i with abrasive discs, water, and
Required equipment

Type of inish A polished surface, though there is a risk of scratches  An exceptionally smooth, fine, and uniform surface finish, ideal
ar marks if abrasives are not properly controlled.  for microscopic observatian

Preparation of thin sections of rocks, decorative

stones, jewelry, and industrial materials.

i Ssample preparation for electron microscopy, high-precision

Common applications Ple prep: " Py, high-pr
materials, and the handling of delicate surfaces.

Precise control of ion energy, ion type, time, and bombardment

Process control
angle.

Manual control of pressure and abrasive materials.

. " Less durable if nat maintained properly, with a risk of Mare durable finish, as the process doesn't damage the surface
Durability of finish N properly, L ol

marks. structure.

Praduces fewer physical residues, but energy is used to
generate the on beam, and microscopic debris may be
produced.

Environmental impact Generates abrasive residues and dust.

This study addresses the challenges of rock sample
preparation by optimizing mechanical polishing. Mechanical
polishing is cost-effective, versatile, and efficient, making it
suitable for a wide range of rocks and for processing larger
sample volumes. However, it can cause surface scratches,
generate abrasive residues, and produce less uniform finishes
if not carefully controlled. To minimize these drawbacks,
principles of optimized material removal, such as those
proposed by Khan et al. [20] for optical components, can be
adapted to improve precision in geological samples. Ion
polishing (e.g., FIB-SEM) produces ultra-smooth, highly
precise surfaces with minimal damage, making it ideal for
high-resolution SEM or TEM analyses. It allows precise
control over ion energy, type, and bombardment angle, but it
is expensive, slower, limited to small areas, and requires
specialized facilities and vacuum conditions. While FIB-
SEM can yield higher resolution in 3D reconstructions, it is
impractical for millimeter-scale rock volumes due to cost,
processing time, and sample size limitations. For this study,
mechanical polishing was selected to prepare a rock miniplug
for 3D reconstruction. This approach enabled progressive
abrasion of flat surfaces, efficient SEM analysis, and
optimized workflow for multiple surface preparations.
Mechanical polishing is faster, flexible, and accessible,
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particularly for heterogeneous or larger rock samples, and it
provides sufficient resolution for 2D visualizations and
structural analysis at the desired scale. This methodology
aligns with recommendations by Jerram and Higgins [3]
regarding sample thickness and cutting planes, ensuring
high-quality 3D reconstructions while balancing precision,
efficiency, and accessibility. For reconstructing a full rock
volume in 3D, mechanical polishing is a more effective
option, especially for millimeter-sized samples. This
technique allows for faster material removal and requires less
preparation time compared to ion polishing used in the FIB-
SEM, which is more suited to small volumes and requires
more processing time. Moreover, mechanical polishing is a
flexible and versatile technique that adapts better to different
types of rocks, especially those with heterogeneous structures
and varied hardness. In comparison, the FIB-SEM has
limitations regarding the sample size it can process and
requires strict preparation protocols. Mechanical polishing is
also much faster than ion polishing methods like those used
in the FIB-SEM, which involve longer preparation times and
are less efficient for larger volumes. Since 3D reconstruction
of a rock sample involves preparing multiple surfaces,
mechanical polishing allows for a more streamlined process,
accelerating the workflow and enabling quicker preliminary
results. This enhanced workflow aligns with the
methodologies recommended in previous studies, such as
those by Jerram and Higgins [3], ensuring that sample
preparation optimizes data interpretation and quality
analysis. Although the FIB-SEM offers higher resolution, we
determined that the level of detail required for our research
did not necessitate the extreme precision offered by this
technology. In this context, mechanical polishing provided a
sufficient finish for obtaining 2D visualizations of polished
surfaces and structural features at the desired scale, without
the excessive resolution offered by the FIB-SEM.
Furthermore, mechanical polishing is more accessible, as it
can be performed in a variety of laboratories with less
complex equipment, whereas the FIB-SEM requires
specialized facilities. Furthermore, our approach adheres to
previous recommendations regarding the management of
sample thickness and cutting planes, which directly support
the quality of the 3D reconstruction. This approach aligns
with Khan et al. [20], who emphasize using mathematical
models to optimize material removal and enhance sample
quality. The selection of a 100 pm section thickness balances
efficiency and uniformity in 3D reconstruction while
facilitating clearer visualization of microstructural features,
as recommended by Jerram and Higgins [3]. Adopting a
methodology that minimizes ambiguities in cutting surfaces
supports their guidance on selecting appropriate cutting
planes for reliable analysis. The use of abrasive papers with
grit sizes of 220 and 400 can cause crystal loss from the
surface, potentially compromising the mineral record across
layers [5,66]. In this study, this phenomenon was observed,
and we recommend preparing additional polished surfaces to
reduce crystal loss and improve 3D visualization. A notable
limitation of the current reconstruction method is the low
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resolution along the z-axis during serial sectioning of garnet
shapes [67], which can obscure details of their 3D
morphology. To address this, fine-tuning acquisition
parameters such as voxel size and scanning area is advised to
enhance resolution, data interpretation, and the precision of
3D visualizations, consistent with prior recommendations for
optimizing similar analyses [3].

4.2. Image acquisition and processing

The acquisition of BSE images has generated a robust dataset
that enables detailed analysis of the microstructure of garnets.
The use of Microsoft Image Composite Editor for image
stitching has been supported by previous research [25-26],
highlighting its effectiveness in creating image mosaics from
microscopic datasets. The production of a high-resolution
mosaic provides rich visualization that facilitates the precise
identification of textural features in the analyzed samples.
This approach differs from previous methods by providing
higher resolution and more precise visualization of textural
features, which improves the quality of analysis compared to
traditional techniques. Image segmentation, performed using
thresholding techniques, aligns with methodologies
discussed by Khan and Ravi [48], who emphasize the
relevance of this process for extracting meaningful
information from images. Through noise reduction and color
parameterization, we have achieved a refined approach that
enhances the identification and analysis of garnets in the
studied sections. Regarding image segmentation, we utilized
a thresholding technique, which has been widely supported
by the literature [48], which emphasizes the importance of
this process for extracting meaningful information from
microscopic images. To address concerns about the
insufficiency of the analysis, we have refined the noise
reduction and color parameterization processes, making the
approach more robust and precise. This refinement is a
significant improvement over previous studies that did not
implement these techniques in as much detail.

4.3. 3D Visualization and particle size distributions

The 3D reconstruction of the PSD of garnet not only
complements previous studies by Marsh [13] and Cashman
and Ferry [14], but also provides a more precise quantitative
framework for assessing nucleation and growth conditions
within the Arquia Complex. The observed relationship
between PSD and nucleation time supports earlier findings,
indicating that larger garnets are associated with early
nucleation events. Our analysis of the PSD reveals a bell-
shaped curve in the fine to medium crystal size range,
followed by a straight line with a negative slope, indicating a
decrease in population density with increasing grain size. At
the same time, our results suggest that phenomena such as
Ostwald ripening [14] may influence the shape of the
distribution, particularly in the growth stages of larger
garnets. This interpretation expands upon the traditional view
by proposing that Ostwald ripening could be influencing the
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distribution of larger crystals, which was not previously
considered in earlier studies. This interpretation diverges
from reports by Kretz [68] and Galwey and Jones [69], who
attributed the shape of crystal size histograms to variations in
nucleation rates over time. The results of our PSD analysis
align with the exponential model discussed in the literature,
validating our approach to characterizing the dynamics of
nucleation and growth. This analysis al-so emphasizes the
importance of nucleation and growth rates in the evolution of
metamorphic rocks, providing a deeper understanding of
their geological history and dynamics.

4.4. Implications for future research

The implications of this study are significant for future
research in petrology and geology. The refined methodology
improves both the accuracy and resolution of data,
establishing a precedent for using advanced imaging and
analysis techniques in similar investigations. Future studies
should apply this approach to other geological contexts,
potentially revealing new insights into mineral formation and
rock evolution. Specifically, correcting existing models to
better represent dm/dt [60], examining the influence of rock
texture and composition on PSD, and exploring alternative
PSD measurement techniques could enhance understanding
of crystallization dynamics. The role of Ostwald ripening
[70,71], particularly during the early stages of garnet growth
when small nuclei are unstable, warrants further
investigation. A limitation of the current method is the low z-
axis resolution during serial sectioning, which reduces
fidelity in 3D garnet shapes. Future research could address
this using high-resolution X-ray tomography, optimizing
voxel size to improve 3D reconstructions and more precisely
capture garnet nucleation and growth. Complementary
techniques, such as infrared digital holography [15], could
provide real-time observations of crystallization, phase
behavior, and microstructural evolution, offering additional
insights beyond BSE-based analysis. By integrating these
approaches, researchers could better understand the influence
of rock texture, composition, and metamorphic conditions on
garnet PSD and growth dynamics. Overall, this study
advances the understanding of garnet microstructure in
metamorphic rocks and establishes a methodological
framework for future research. Validation against previous
studies demonstrates the robustness of our approach and
highlights opportunities to explore nucleation and growth
mechanisms in greater detail.

5. Conclusions

This study presents a novel methodology for studying garnet
nucleation and growth in metamorphic rocks, combining
precise serial sectioning and advanced imaging techniques.
The key contribution of this work lies in the development of
a robust, reproducible process for three-dimensional (3D)
visualization of garnet morphology and the quantification of
nucleation and growth rates. Through systematic adjustments
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to section thickness and grinding parameters, we have
minimized errors and generated a high-quality dataset that
provides an unprecedented level of detail regarding garnet
morphology. This methodology not only addresses existing
challenges in imaging and analyzing metamorphic minerals
but also sets a standard for similar studies in the future.

The analysis of PSDs reveals a clear relationship between
nucleation timing and particle size, providing valuable
insights into the crystallization conditions within the Arquia
Complex. Our findings confirm that earlier nucleation events
lead to the formation of larger garnets, while later events are
associated with smaller particles. This relationship offers
new understanding into the crystallization dynamics and
provides a clearer picture of the evolutionary history of
garnet in metamorphic environments.

However, the study also acknowledges certain limitations.
The use of abrasive materials during sample preparation,
particularly with grits of 220 and 400, can result in the
removal of surface crystals, potentially compromising data
accuracy and the mineral rec-ord. To enhance the precision
of results, we recommend avoiding such abrasives in future
studies and exploring alternative preparation techniques that
minimize crystal loss.

Another key limitation involves the low resolution along the
z-axis during 3D reconstruction, which can lead to significant
information loss regarding the three-dimensional shape of
garnets. To address this, it is essential to carefully evaluate
acquisition parameters, such as voxel size and scanning area,
during the imaging process to improve the precision of data
interpretation.

Looking ahead, this study lays a strong foundation for future
research in petrology and geology. We recommend that
future investigations apply this methodology to other
geological contexts, which could yield new insights into
mineral formation processes and metamorphic evolution.
Further exploration of alternative preparation methods and
improvements in 3D reconstruction techniques are crucial for
enhancing data accuracy. Finally, the integration of advanced
imaging techniques, such as infrared digital holography,
could provide real-time insights into crystallization and
growth dynamics, offering even greater detail about the
internal structure and deformation mechanisms of garnets.
This work provides valuable insights into garnet nucleation
and growth processes, setting the stage for further exploration
and a more comprehensive understanding of metamorphic
rock evolution and mineral formation.
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