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Resumen

Los polinomios de Bessel son una familia de polinomios ortogona-
les yn (x) presentados como solucién de la ecuacién diferencial de
segundo orden zy” + 2(z + 1)y’ = n(n + 1)y; estos polinomios
satisfacen la recurrencia y,(z) = (2n — 1)2yn—1() + yn—2(2),
con y1(x) z+ 1y yo(x) 1. En términos de la derivada,
los polinomios de Bessel pueden obtenerse mediante la recurrencia
yn(2) = (nx+1)yn—1(z) + 2%y, _, (x). En este articulo estudiamos
la conexién entre los polinomios de Bessel y las gramdticas indepen-
dientes del contexto mediante el operador derivada formal, ademas
demostramos algunas identidades de los polinomios de Bessel.

Palabras clave: Polinomios de Bessel; Operador derivada for-
mal; Gramaticas independientes del contexto.

Abstract:
The Bessel polynomials are an orthogonal family of polynomials
yn () introduced as solutions of the second-order differential equation
22y” 4+ 2(z + 1)y’ = n(n + 1)y, they satisfy the recurrence relation
yn( ) = (2n — Dayn—1(2) + yn—2(z), where y1(z) = = + 1
and yo(z) = 1. In terms of derivatives, Bessel polynomials can be
described by the recurrence yy, () = (nz +1)yn—1(2) +x2yh_1 (z).
In this paper, we study the connection between Bessel polynomials
and context-free grammars through the formal derivative operator, and

we prove some identities of this family of polynomials.

Keywords: Bessel polynomials; Formal derivative operator;

Context-free grammars.

1. Introduction

Let X be an alphabet whose letters are regarded as inde-
pendent commutative indeterminates. Following [1], a formal
function over Y is defined recursively as follows:

1. Every letter in ¥ is a formal function.

2. If u, v are formal functions, then v + v and uv are formal

functions.

If f(x) is an analytic function, and u is a formal function,
then f(u) is a formal function.

Every formal function is constructed as above in a finite
number of steps.

A context-free grammar G over X is defined as a set of
substitution rules replacing a letter in > by a formal function
over X.

Given a context-free grammar G over 3, the formal deriva-
tive operator D, with respect to G, is defined in the following
way:

1. For w,v formal functions D(u + v)
D(v) and D(uv) = D(u)v + uD(v).

D(u) +

2. If f(z) is an analytic function and « is a formal function,

p(sw) = 2 iy,

3. For a € 3, if a — w is a production in G, w being a
formal function, then D(a) = w; in other cases a is called
a constant and D(a) = 0.
let

G be
2 bic 2,2
a — ab ;b—>7;c—>bc

D(a) = ab?, D(b)

For instance, the grammar G

}, we have DY(a)

a,

= Y¢ D(c) = b2, D(c?) = 2¢D(c) =
2b°c® and D(ac) = D(a)c + aD(c) = [ab?]c + a [b?c?] =
ab®c + ab®c?. We next define the iteration of the formal
derivative operator.

For a formal function u, we define D" *1(u)
forn > 0, and D°(u) = u.

To illustrate the use of Definition 1. we show a connection
between context-free grammars and double factorial numbers,
which are the numbers defined by the following recurrence

= D(D"™(u))

relation n!! = n(n — 2)!! with 11! = 1 and O!! = 1. As an
interesting fact, double factorial numbers can be expressed in
terms of factorial numbers, in the form (2n)!! = 2"n!, and

factorial numbers can also be expressed in terms of double
factorial numbers: n! = n!l(n — 1!}, cf. [14].
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IfG=<a—ab®;b— % ;c— bZCQ},thenforalln >
0 we have:

1. D"(b?) = (2n — D)Np2(n+Den,

2. D"(c) = (2n — 1)Np2nentl,

3. D*(c?) = (2n)!p?nent2,

Demostracion. Here we prove 1.; the other results can be si-
milarly proved.

We argue by induction on n. Clearly D°(b?) = b?, therefore
the proposition is true for n = 0. Assuming that D" (b?)
(2n — D2+ en | Dt (p2m) is calculated as follows:

D" (%) = D(D"(6?) = D ((2n — D))
= (2n — D)D)
= (2n — D D)™ + 67" 2 D(c™)]

Since D(b*"+2) = (2n + 2)b*"H1D(b) and D(c") =
neé*'D(¢), with D(b) = £¢ and D(¢) = b2c2, we have
that D"+1(b?) is given by

= (2n — DI [(n 4+ Dp*" Tt 4 pp?ntientl]
= (2n — )N(2n + 1)p?"Hientl

Hence, D"t1(b%) = (2n + 1)!1p2(n+2)cntl, O

The multifactorial numbers n!,. are given by the recurrence
relation

nl, =n(n—r)l, with (1 —r)l, =---

If r = 1 we get factorial numbers i.e., n!y = nl; if r = 2
we get double factorial numbers i.e., nly = nl!! cf. [14]. The
following result can be proven similarly to Proposition 1..

b3
If G = a—)ab2;b—>7c;c—>b202 we have:

(4n — 3)'4 p2(n+1).n
on
(4n —

277,

The formal derivative operator of Definition 1. preserves
many of the properties of the differential operator in elementary
calculus cf. [14], among them the generalized product rule

1. D"(b) =

1)!
2. Dn(bc> — ) 4b2n+1c7l+1.

D(uy...up) = ZD(uk) Huj (1)
k=1 j=1
ik
For instance, if we have the product of three functions we get
D(U1UQU3) = D(ul)ugug + ulD(UQ)Ug + U1U,2D(U3). The
formal derivative operator also preserves Leibniz’s formula

n

D™ (uv) = Z

k=0

(Z) D" F(u)DF(v). )

Leibniz’s formula is the main tool used in establishing com-
binatorial properties of the objects generated through context-
free grammars [2]. To illustrate the use of Leibniz’s formula we

2

present a grammatical proof for the following combinatorial
identity.

@n+ )= (7)(20n — k) — )UK for all n > 0.
k=0

Demostracion. By Proposition 1., D"*1(c) (2n +
1)!1p2(++1) 742 On the other hand, by Definition 1. we have
D"t(¢) = D"(D(c)) = D"(b*c?). By Leibniz’s formula
we get

D"(b*¢?) = zn: D" (b*)D*(c?).

k=0

3

Since D" k(b)) = (2(n — k) — 1)Ip2(n—k+Den—k anq
D¥(c?) = (2k)1b?kcF+2, by Proposition 1., we obtain that
D™(b%c?) is equal to

[(2(n — k) — 1)1 =k+D) cn=k][(2f) 11p2F F+2]

HM3

b

0

= Zn:(2(n — k) — 1)II(2k)UpPr 2t
k=0

Thus we obtain

Dn+1(6) _ Dn(bQCQ)

n

(2n 4+ HUB 22 =3 " (2(n — k) — 1)11(2k) 16222,

k=0

By equating the coefficients of b>"*2¢"*+2 we conclude that
n

@n+ Dl = 3 (2(n — k) — D)2k O
k=0

Since D"(c?) = D™(cc) by Leibniz’s formula and Proposi-
tion 1. we may deduce that

n

2o = "(2(n — k) — 1)!1(2k — 1)!!

k=0

“

A combinatorial proof of the Equation (4) can be found in [5].
On the other hand, by applying Leibniz formula on D™ (bc) we

may deduce
zn:
k
k=0

The formal derivative operator defined with respect to
context-free grammars has been used to study combinatorial
objects cf. [6,10,11,17], families of numbers cf. [14, 15], fami-
lies of polynomials cf. [3,9] among others. In [13], the formal
derivative operator defined with respect to matrix grammars
and a connection with multifactorial numbers were introduced.

2n

B (4(n — k) — 3)l4
on—k

2k — 1! (5)

In this paper, we present the relation between Bessel polyno-
mials and context-free grammars, we introduce the grammar

6-{ i

b°c .
a— ab? ;b — 5 e b2c? » and we use it to prove
some properties.



2. Context-free grammars and Bessel polynomials

The Bessel polynomials y,, (z) were introduced in [7], they
can be defined as the polynomial solution of the second-order
differential equation

2 dzyn
dx?

dyn

+2(z+1) ”

n(n + 1)yn(z). (6)

Since yo(z) = 1 and y1(z) = = + 1, y, () can be easily

obtained via the following recurrence relation

Un () = (2n — D)ayn—1(z) + yn_2(x). @)

In terms of derivatives y,, () satisfies the recurrence relation

yn(x) = (n@ + 1)yn_1(z) + 2%y, _1 (). (8)

The first Bessel polynomials are:

Yo(z) =1

yi(z) =z +1

yo(x) = 32% + 3z + 1

ys3(z) = 152° + 152 + 62 + 1

ya(x) = 1052* 4+ 1052° + 4527 + 10z + 1

ys(z) = 9452° + 9452 + 42023 + 10522 + 152 + 1

The following result shows the relation between Bes-
sel polynomials and the context-free grammar G

b3
a—>ab2;b—>26;c—>6202}.
2 b’c 2.2
a — ab ;b%T;c%b c* 5 then:

IfG{

1. D"(a) = ab®™y,,_1(c) forall n > 1.

2. D"(ac) = ab®*"cyy,(c) for all n > 0.

Demostracion. Here we prove 1., the result 2. can be similarly
proved.

We argue by induction on n. Since D(a) = ab?
ab®Myqg(c), the result is true for n = 1. Assuming that
D"(a) = ab*y,,_1(c), we calculate D" (a) as follows

D(D"(a))
= D(abQ"yn,l (¢))

= D(a)b*"y,_1(c) + aD(b*)y,_1(c) + ab*" D(y,_1(c

By Definition 1. we get

ab®" 2y, _1(c)+a [anQ”_lD(b)yn,l(c) + 07"y, 1 (¢)D(c)

b3
Since D(a) = ab?, D(b) = 70 and D(c) = b2c?

that D"*1(a) is given by

we obtain

3

ab2"+2yn—1(0) +a [nb2”+26yn—1(0) + b2n+202y;—1(c)]
= gb2(rt+D) [(1 + ne)yn—1(c) + 02%71(0)] :

Thus, by Equation (8), we get D"t (a) = ab*"+ 1y, (c).
O

An explicit formula for y,, (x), known as Rodrigues’ formula
[4], is given by
(5)

Therefore, the Bessel polynomials y,,(x) can be expressed

n
as Y. By xz* where B, = % for 0 < k < n;
k=0 o

" (n+ k)
yn(z)zz(’fl—]{i)!)k‘!

k=0

T

. ©)

in other cases we define B,, ;, = 0. The coefficients of Bes-
sel polynomials B,, ; can be found as the triangular array
A001498 in OEIS (the On-line Encyclopedia of Integer Se-
quences).

nlk 0 1 2 3 4 5
0 1

1 1 1

2 1 3 3

3 1 6 I5 15

4 I 10 45 105 105

5 1 15 105 420 945 945

Tabla 1: The first B,, j, coefficients.

The following proposition is a recurrence relation to genera-
te the triangular array of B,, ;, numbers
BnJrl,k: = (n + k)Bn,kfl + Bn,k:

Demostracion. Since yp4+1(x) = [(n + 1) + ly,(x) +
22y}, (x), we have that B,, 1 2" is given by

[(n+ l)xBn’k,lxk_l + Bn’kxk] +a2?(k — 1)Bn’k,1xk_2
=(n+ k:)Bn,k,lxk + Bn’kxk

Thus, by equating the coefficients of z* we conclude that
Bn-‘rl,k - (TL + k)Bn,k—l + Bn,k O

It is easy to prove that B,, o = 1 for each n > 0, from
Proposition 2. considering k£ = 0. Similarly, considering k = n
we may obtain a connection between double factorial numbers
and the diagonal of the triangular array presented in Table 1.
)) Brn = (2n—1)!'and By, , = By, 1 foreachn > 1.

The Bessel polynomials can be generated through several
context-free grammars. For instance, if G = {a — a®b —
ab} it can be verified that D" (ab) = a" by, (a) cf. [6]. On
the other hand, for the grammar {a — ab + ab®;b — b*}
we get D"(a) = ab™y,(b) cf. [11]. If {a — ab ;b —
b%c ;e — be?}, then D™ (ab) = ab™ 1y, (c) and D™ (a?b) =
2"a2b" My, (£) cf. [8], in addition for this grammar we may
to prove that D" (ac) = ab"cyy(c). In [16], was introduced



the grammar G' = {a — az + ay;r — 222%;y — 2y} such
n
that D"(a) = a Y B, pxFy"*.
k=0

The results above can be proved by induction via the recu-
rrence relation for Bessel polynomials given in Equation (8),
similar to Proposition 2..

3. Some identities of Bessel polynomials

The following proposition was presented in [8] by the

context-free grammar {a — ab ;b — b%c ;¢ —
bc?}. Here we give a proof using the grammar G =
{a—)ab2 ;b — % ;c—>b202}.
Yn(z) = > (1) (2n — 2k — I)yp_q (z)z" "
k=0
Demostracion. Let G be the grammar
a— ab® ;b — % ic— b202}. By Proposition 2.,

D" l(a) = ab®"* 2y, (c); since D" (a) = D™(D(a))
D™ (ab?), we get

ab®™ 2y, (c) = D™ (ab?). (10)
By Leibniz formula on D" (ab?) we obtain
ab™ Py, (c) =) (Z) D*(a)D"* (v?). a1

k=0
By Proposition 1., D"(b?) = (2n — 1)!162("+1)¢"; replacing
in (11), we have that ab®>"*2y,,(c) is given by

n

D

(Z) ab®yp_1(¢)(2(n — k) — D2kt n—k
k=0

n

D

k=0

(Z) (2n — 2k — D)Nyp_1(c)c™ *ab®+2.

Since both sides of the above equality have ab?"+2, we con-
clude

(Z) (2n — 2k — 1)lyg_ ()2,
O

Proposition 3. can be similarly proved by using Leibniz’s
formula on D™ (ac). The following proposition shows that all
the roots of Bessel polynomials are simple roots.

If r is a root of y,, (), r is a simple root.

Demostracion. We argue by contradiction. Assuming that r
is a non-simple root of y,(z) we have that y,,(r) = 0 and
y,, (r) = 0, therefore

Yni1(r) = [(n + Dr + yu(r) +r2yL(r) = 0. (12)

On the other hand, by equation (7) and taking into account

4

that yn(r) = yn+1(r) = 0 we get

Ynt1(r) = 2(n +1) = 1]ryn(r) + yn-1(r)
0=0 + yn—l(T)

Thus y,—1(r) 0. Since y,(r) [nr 4+ yn—1(r) +
721 (r) and yn—1(r) = yu(r) = 0 we getr?y;,_(r) = 0,
therefore r = 0 or y/,_;(r) = 0. Since B, o = 1 for each
n we have that r # 0, thus y,,_,(r) = 0. Hence for each n
we have that if r is a non-simple root of y,,(z) then is a non-
simple root of y,,_1(z); furthermore, we may conclude that
r is a non-simple root of y,,_2(x) so we have a contradiction
because if we continue with that reasoning if 7 is a non-simple
root of y,, («) it will be a non-simple root of ¥ (z) but roots of
y2(x) are complex conjugate simple roots.

Hence all the roots of y,,(x) are simple roots. O

Since 0 < B, 1 <--- < B, , foreachn and B,, ;, € R for
each n and k, by Enestrom-Kakeya theorem we have that all
the zeros of y,,(2) lies on |z| < 1 cf. [12], therefore we may
think that the Bessel polynomials must have common roots.

Yn+1(x) and y, () do not have common roots.

Demostracion. We argue by contradiction. Assuming that
yn('r) = yn+1(r) = 0 we have

Ynt1(r) = [(n + 1)1 + Uy (r) + r?y,,(r)
0=0+7r%y.(r)

Since B,, o = 1 for each n we have that » # 0, therefore
yh,_1(r) = 0. Hence r is a non-simple root of y,,_1(z), but
by Proposition 3. we obtain that y,,_1 (z) does not have non-
simple roots, thus we have a contradiction. O
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