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Resumen Abstract:
Los polinomios de Bessel son una familia de polinomios ortogonales
yn(x) presentados como solución de la ecuación diferencial de se-
gundo orden x2y′′ + 2(x + 1)y′ = n(n + 1)y; estos polinomios
satisfacen la recurrencia yn(x) = (2n − 1)xyn−1(x) + yn−2(x),
con y1(x) = x + 1 y y0(x) = 1. En términos de la derivada,
los polinomios de Bessel pueden obtenerse mediante la recurrencia
yn(x) = (nx+1)yn−1(x)+x2y′

n−1(x). En este artı́culo estudiamos
la conexión entre los polinomios de Bessel y las gramáticas indepen-
dientes del contexto mediante el operador derivada formal, además
demostramos algunas identidades de los polinomios de Bessel.

The Bessel polynomials are an orthogonal family of polynomials
yn(x) introduced as solutions of the second-order differential equation
x2y′′ + 2(x+ 1)y′ = n(n+ 1)y, they satisfy the recurrence relation
yn(x) = (2n − 1)xyn−1(x) + yn−2(x), where y1(x) = x + 1

and y0(x) = 1. In terms of derivatives, Bessel polynomials can be
described by the recurrence yn(x) = (nx+1)yn−1(x)+x2y′

n−1(x).
In this paper, we study the connection between Bessel polynomials
and context-free grammars through the formal derivative operator, and
we prove some identities of this family of polynomials.
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1. Introduction

Let Σ be an alphabet whose letters are regarded as independent
commutative indeterminates. Following [1], a formal function
over Σ is defined recursively as follows:

1. Every letter in Σ is a formal function.

2. If u, v are formal functions, then u+ v and uv are formal
functions.

3. If f(x) is an analytic function, and u is a formal function,
then f(u) is a formal function.

4. Every formal function is constructed as above in a finite
number of steps.

A context-free grammar G over Σ is defined as a set of
substitution rules replacing a letter in Σ by a formal function
over Σ.

Definition 1. Given a context-free grammar G over Σ, the
formal derivative operator D, with respect to G, is defined in
the following way:

1. For u, v formal functions D(u + v) = D(u) +
D(v) and D(uv) = D(u)v + uD(v).

2. If f(x) is an analytic function and u is a formal function,

D(f(u)) =
∂f(u)

∂u
D(u).

3. For a ∈ Σ, if a → w is a production in G, w being
a formal function, then D(a) = w; in other cases a is
called a constant and D(a) = 0.

For instance, let G be the grammar G ={
a → ab2 ; b → b3c

2
; c → b2c2

}
, we have D0(a) = a,

D(a) = ab2, D(b) = b3c
2 , D(c) = b2c2, D(c2) = 2cD(c) =

2b2c3 and D(ac) = D(a)c + aD(c) = [ab2]c + a
[
b2c2

]
=

ab2c + ab2c2. We next define the iteration of the formal
derivative operator.

Definition 2. For a formal function u, we define Dn+1(u) =
D(Dn(u)) for n ≥ 0, and D0(u) = u.

To illustrate the use of Definition 2 we show a connection
between context-free grammars and double factorial numbers,
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which are the numbers defined by the following recurrence
relation n!! = n(n − 2)!! with 1!! = 1 and 0!! = 1. As an
interesting fact, double factorial numbers can be expressed in
terms of factorial numbers, in the form (2n)!! = 2nn!, and
factorial numbers can also be expressed in terms of double
factorial numbers: n! = n!!(n− 1)!!, cf. [14].

Proposition 1. If G =

{
a → ab2 ; b → b3c

2
; c → b2c2

}
,

then for all n ≥ 0 we have:

1. Dn(b2) = (2n− 1)!!b2(n+1)cn.

2. Dn(c) = (2n− 1)!!b2ncn+1.

3. Dn(c2) = (2n)!!b2ncn+2.

Proof. Here we prove 1.; the other results can be similarly
proved.

We argue by induction on n. Clearly D0(b2) = b2, therefore
the proposition is true for n = 0. Assuming that Dn(b2) =
(2n− 1)!!b2(n+1)cn, Dn+1(b2m) is calculated as follows:

Dn+1(b2) = D(Dn(b2) = D
(
(2n− 1))!!b2(n+1)cn

)
= (2n− 1)!!D(b2(n+1)cn)

= (2n− 1)!!
[
D(b2n+2)cn + b2n+2D(cn)

]
Since D(b2n+2) = (2n + 2)b2n+1D(b) and D(cn) =

ncn−1D(c), with D(b) = b3c
2 and D(c) = b2c2, we have

that Dn+1(b2) is given by

= (2n− 1)!!
[
(n+ 1)b2n+4cn+1 + nb2n+4cn+1

]
= (2n− 1)!!(2n+ 1)b2n+4cn+1

Hence, Dn+1(b2) = (2n+ 1)!!b2(n+2)cn+1.

The multifactorial numbers n!r are given by the recurrence
relation

n!r = n(n− r)!r with (1− r)!r = · · · = (−1)!r = 0!r = 1.

If r = 1 we get factorial numbers i.e., n!1 = n!; if r = 2
we get double factorial numbers i.e., n!2 = n!! cf. [14]. The
following result can be proven similarly to Proposition 1.

Proposition 2. If G =

{
a → ab2 ; b → b3c

2
; c → b2c2

}
we

have:

1. Dn(b) =
(4n− 3)!4

2n
b2(n+1)cn.

2. Dn(bc) =
(4n− 1)!4

2n
b2n+1cn+1.

The formal derivative operator of Definition 1 preserves
many of the properties of the differential operator in elementary
calculus cf. [14], among them the generalized product rule

D(u1 . . . un) =

n∑
k=1

D(uk)

n∏
j=1
j ̸=k

uj (1)

For instance, if we have the product of three functions we get
D(u1u2u3) = D(u1)u2u3 + u1D(u2)u3 + u1u2D(u3). The
formal derivative operator also preserves Leibniz’s formula

Dn(uv) =

n∑
k=0

(
n

k

)
Dn−k(u)Dk(v). (2)

Leibniz’s formula is the main tool used in establishing com-
binatorial properties of the objects generated through context-
free grammars [2]. To illustrate the use of Leibniz’s formula
we present a grammatical proof for the following combinatorial
identity.

Proposition 3. (2n + 1)!! =
n∑

k=0

(
n
k

)
(2(n − k) − 1)!!(2k)!!

for all n > 0.

Proof. By Proposition 1, Dn+1(c) = (2n+ 1)!!b2(n+1)cn+2.
On the other hand, by Definition 2 we have Dn+1(c) =
Dn(D(c)) = Dn(b2c2). By Leibniz’s formula we get

Dn(b2c2) =
n∑

k=0

Dn−k(b2)Dk(c2). (3)

Since Dn−k(b2) = (2(n − k) − 1)!!b2(n−k+1)cn−k and
Dk(c2) = (2k)!!b2kck+2, by Proposition 1, we obtain that
Dn(b2c2) is equal to

n∑
k=0

[(2(n− k)− 1)!!b2(n−k+1)cn−k][(2k)!!b2kck+2]

=

n∑
k=0

(2(n− k)− 1)!!(2k)!!b2n+2cn+2

Thus we obtain

Dn+1(c) = Dn(b2c2)

(2n+ 1)!!b2n+2cn+2 =

n∑
k=0

(2(n− k)− 1)!!(2k)!!b2n+2cn+2.

By equating the coefficients of b2n+2cn+2 we conclude that

(2n+ 1)!! =
n∑

k=0

(2(n− k)− 1)!!(2k)!!

Since Dn(c2) = Dn(cc) by Leibniz’s formula and Proposi-
tion 1 we may deduce that

(2n)!! =

n∑
k=0

(2(n− k)− 1)!!(2k − 1)!! (4)

A combinatorial proof of the Equation (4) can be found in [5].
On the other hand, by applying Leibniz formula on Dn(bc) we
may deduce

(4n− 1)!4
2n

=

n∑
k=0

(
n

k

)
(4(n− k)− 3)!4

2n−k
(2k − 1)!! (5)

The formal derivative operator defined with respect to
context-free grammars has been used to study combinatorial
objects cf. [6, 10, 11, 17], families of numbers cf. [14, 15], fam-
ilies of polynomials cf. [3,9] among others. In [13], the formal
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derivative operator defined with respect to matrix grammars
and a connection with multifactorial numbers were introduced.

In this paper, we present the relation between Bessel polyno-
mials and context-free grammars, we introduce the grammar

G =

{
a → ab2 ; b → b3c

2
; c → b2c2

}
and we use it to prove

some properties.

2. Context-free grammars and Bessel polynomials

The Bessel polynomials yn(x) were introduced in [7], they
can be defined as the polynomial solution of the second-order
differential equation

x2 d
2yn
dx2

+ 2(x+ 1)
dyn
dx

= n(n+ 1)yn(x). (6)

Since y0(x) = 1 and y1(x) = x + 1, yn(x) can be easily
obtained via the following recurrence relation

yn(x) = (2n− 1)xyn−1(x) + yn−2(x). (7)

In terms of derivatives yn(x) satisfies the recurrence relation

yn(x) = (nx+ 1)yn−1(x) + x2y′n−1(x). (8)

The first Bessel polynomials are:

y0(x) = 1

y1(x) = x+ 1

y2(x) = 3x2 + 3x+ 1

y3(x) = 15x3 + 15x2 + 6x+ 1

y4(x) = 105x4 + 105x3 + 45x2 + 10x+ 1

y5(x) = 945x5 + 945x4 + 420x3 + 105x2 + 15x+ 1

The following result shows the relation between
Bessel polynomials and the context-free grammar

G =

{
a → ab2 ; b → b3c

2
; c → b2c2

}
.

Proposition 4. If G =

{
a → ab2 ; b → b3c

2
; c → b2c2

}
then:

1. Dn(a) = ab2nyn−1(c) for all n ≥ 1.

2. Dn(ac) = ab2ncyn(c) for all n ≥ 0.

Proof. Here we prove 1., the result 2. can be similarly proved.

We argue by induction on n. Since D(a) = ab2 =
ab2(1)y0(c), the result is true for n = 1. Assuming that
Dn(a) = ab2nyn−1(c), we calculate Dn+1(a) as follows

D(Dn(a))

z = D(ab2nyn−1(c))

= D(a)b2nyn−1(c) + aD(b2n)yn−1(c) + ab2nD(yn−1(c))

By Definition 1 we get

ab2n+2yn−1(c)+a
[
2nb2n−1D(b)yn−1(c) + b2ny′n−1(c)D(c)

]
Since D(a) = ab2, D(b) =

b3c

2
and D(c) = b2c2 we obtain

that Dn+1(a) is given by

ab2n+2yn−1(c) + a
[
nb2n+2cyn−1(c) + b2n+2c2y′n−1(c)

]
= ab2(n+1)

[
(1 + nc)yn−1(c) + c2y′n−1(c)

]
.

Thus, by Equation (8), we get Dn+1(a) = ab2(n+1)yn(c).

An explicit formula for yn(x), known as Rodrigues’ formula
[4], is given by

yn(x) =

n∑
k=0

(n+ k)!

(n− k)!k!

(x
2

)k

(9)

Therefore, the Bessel polynomials yn(x) can be expressed

as
n∑

k=0

Bn,kx
k where Bn,k = (n+k)!

2k(n−k)!k!
for 0 ≤ k ≤ n;

in other cases we define Bn,k = 0. The coefficients of
Bessel polynomials Bn,k can be found as the triangular ar-
ray A001498 in OEIS (the On-line Encyclopedia of Integer
Sequences).

n / k 0 1 2 3 4 5
0 1
1 1 1
2 1 3 3
3 1 6 15 15
4 1 10 45 105 105
5 1 15 105 420 945 945

Tabla 1: The first Bn,k coefficients.

The following proposition is a recurrence relation to gener-
ate the triangular array of Bn,k numbers

Proposition 5. Bn+1,k = (n+ k)Bn,k−1 +Bn,k

Proof. Since yn+1(x) = [(n+1)x+1]yn(x) + x2y′n(x), we
have that Bn+1,kx

k is given by

[(n+ 1)xBn,k−1x
k−1 +Bn,kx

k] + x2(k − 1)Bn,k−1x
k−2

= (n+ k)Bn,k−1x
k +Bn,kx

k

Thus, by equating the coefficients of xk we conclude that
Bn+1,k = (n+ k)Bn,k−1 +Bn,k

It is easy to prove that Bn,0 = 1 for each n > 0, from
Proposition 5 considering k = 0. Similarly, considering k = n
we may obtain a connection between double factorial numbers
and the diagonal of the triangular array presented in Table 1.

Corollary 1. Bn,n = (2n−1)!! and Bn,n = Bn,n−1 for each
n ≥ 1.
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The Bessel polynomials can be generated through several
context-free grammars. For instance, if G = {a → a3; b →
ab} it can be verified that Dn(ab) = an+1byn(a) cf. [6]. On
the other hand, for the grammar {a → ab + ab2; b → b3}
we get Dn(a) = abnyn(b) cf. [11]. If {a → ab ; b →
b2c ; c → bc2}, then Dn(ab) = abn+1yn(c) and Dn(a2b) =
2na2bn+1yn

(
c
2

)
cf. [8], in addition for this grammar we may

to prove that Dn(ac) = abncyn(c). In [16], was introduced
the grammar G = {a → ax + ay;x → 2x2; y → xy} such

that Dn(a) = a
n∑

k=0

Bn,kx
kyn−k.

The results above can be proved by induction via the recur-
rence relation for Bessel polynomials given in Equation (8),
similar to Proposition 4.

3. Some identities of Bessel polynomials

The following proposition was presented in [8] by the grammar
{a → ab ; b → b2c ; c → bc2}. Here we give a proof using the
context-free grammar G =

{
a → ab2 ; b → b3c

2 ; c → b2c2
}

.

Proposition 6. yn(x) =
n∑

k=0

(
n
k

)
(2n−2k−1)!!yk−1(x)x

n−k.

Proof. Let G be the grammar{
a → ab2 ; b → b3c

2 ; c → b2c2
}

. By Proposition 4,

Dn+1(a) = ab2n+2yn(c); since Dn+1(a) = Dn(D(a)) =
Dn(ab2), we get

ab2n+2yn(c) = Dn(ab2). (10)

By Leibniz formula on Dn(ab2) we obtain

ab2n+2yn(c) =

n∑
k=0

(
n

k

)
Dk(a)Dn−k(b2). (11)

By Proposition 1, Dn(b2) = (2n − 1)!!b2(n+1)cn; replacing
in (11), we have that ab2n+2yn(c) is given by

n∑
k=0

(
n

k

)
ab2kyk−1(c)(2(n− k)− 1)!!b2(n−k+1)cn−k

=

n∑
k=0

(
n

k

)
(2n− 2k − 1)!!yk−1(c)c

n−kab2n+2.

Since both sides of the above equality have ab2n+2, we con-
clude

yn(x) =

n∑
k=0

(
n

k

)
(2n− 2k − 1)!!yk−1(x)x

n−k.

Proposition 6 can be similarly proved by using Leibniz’s
formula on Dn(ac). The following proposition shows that all
the roots of Bessel polynomials are simple roots.

Proposition 7. If r is a root of yn(x), r is a simple root.

Proof. We argue by contradiction. Assuming that r is a non-
simple root of yn(x) we have that yn(r) = 0 and y′n(r) = 0,

therefore

yn+1(r) = [(n+ 1)r + 1]yn(r) + r2y′n(r) = 0. (12)

On the other hand, by equation (7) and taking into account
that yn(r) = yn+1(r) = 0 we get

yn+1(r) = [2(n+ 1)− 1]ryn(r) + yn−1(r)

0 = 0 + yn−1(r)

Thus yn−1(r) = 0. Since yn(r) = [nr + 1]yn−1(r) +
r2y′n−1(r) and yn−1(r) = yn(r) = 0 we get r2y′n−1(r) = 0,
therefore r = 0 or y′n−1(r) = 0. Since Bn,0 = 1 for each
n we have that r ̸= 0, thus y′n−1(r) = 0. Hence for each n
we have that if r is a non-simple root of yn(x) then is a non-
simple root of yn−1(x); furthermore, we may conclude that
r is a non-simple root of yn−2(x) so we have a contradiction
because if we continue with that reasoning if r is a non-simple
root of yn(x) it will be a non-simple root of y2(x) but roots of
y2(x) are complex conjugate simple roots.

Hence all the roots of yn(x) are simple roots.

Since 0 ≤ Bn,1 ≤ · · · ≤ Bn,n for each n and Bn,k ∈ R for
each n and k, by Eneström-Kakeya theorem we have that all
the zeros of yn(z) lies on |z| < 1 cf. [12], therefore we may
think that the Bessel polynomials must have common roots.

Corollary 2. yn+1(x) and yn(x) do not have common roots.

Proof. We argue by contradiction. Assuming that yn(r) =
yn+1(r) = 0 we have

yn+1(r) = [(n+ 1)r + 1]yn(r) + r2y′n(r)

0 = 0 + r2y′n(r)

Since Bn,0 = 1 for each n we have that r ̸= 0, therefore
y′n−1(r) = 0. Hence r is a non-simple root of yn−1(x), but by
Proposition 7 we obtain that yn−1(x) does not have non-simple
roots, thus we have a contradiction.

.
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