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Resumen

En este estudio, la conocida serie conjugada de Fourier, tradicional-
mente sumable mediante varios métodos individuales, demuestra una
mayor velocidad de convergencia y una mejor aproximacion de sefiales
al aplicarse una transformacién de producto. Este trabajo tiene como
objetivo establecer un nuevo teorema para aproximar sefiales dentro
de una clase especifica de funciones, utilizando la sumabilidad en
producto de series conjugadas de Fourier. Ademads, se presentan una
serie de ejemplos ilustrativos para validar el método de sumabilidad
propuesto y destacar su comportamiento de convergencia. Los resulta-
dos se respaldan mediante simulaciones realizadas en programacion
MATLAB.

Palabras clave: Lipschitz generalizada ponderada; Serie de
Fourier conjugada; Desigualdad de Holder

Abstract:

In this study, the well-known Fourier Conjugate series, which is tradi-
tionally summable through various individual methods, demonstrates
enhanced convergence speed and improved signal approximation when
subjected to a product transform. This work aims to establish a novel
theorem for approximating signals within a specific function class, uti-
lizing product summability of conjugate Fourier series. Additionally,
arange of illustrative examples is provided to validate the proposed
summability method and highlight their convergence behavior. The
findings are further supported through simulations conducted using

MATLAB programming.

Keywords: Generalized Weighted Lipschitz; Conjugate Fourier

Series; Holder Inequality

1. Introduction and Motivation

Summability theory has various applications and plays an im-
portant role for study of functional analysis. Weierstrass theo-
rem was used in starting to originate the approximation theory
and further this study was carried out using trigonometric poly-
nomials. Signal approximation is crucial because it transmits
information or characteristics about a phenomenon. Engineers
and scientists used Fourier approximation features to create
finite impulse response (FIR) digital filters with enhanced per-
formance. Product operators have applications in signal theory,
mechanical engineering, machine theory and digital filter de-
sign. Zygmund [3]] proposed the trigonometric approximation
of signals for the periodic series. Several researchers studied
the approximation of signals or functions by various summa-
bility methods like Cesaro, Euler, Riesz and Norlund-mean etc.

Rhoades et. al [3], Nigam [I1]], Mittal et. al [[16], [17], Sonker

and Singh [19], Mishra et. al [20] carried out their study on
approximation of signals belong to Lipschitz classes by linear
operators. Bor [7], [8] generalized the known results by using
a class of infinite and Fourier series. An infinite series that can-
not be summable by the left or right linear operators indepen-
dently can be summable to a number using product operators,
which made the product operators advantageous over linear
operators. Thakur et. al. [I]], Rathore and Singh [2]}, Khan [10],
Qureshi [13]], Mittal et. al [15], Deger [22]}, Singh [23], Singh
and Srivastava have proved theorems on approximation
of functions belong to weighted class. Lal and Nigam
worked on approximation of signal by matrix summability.
As a result, the summability means’ subsequences are usu-
ally always going to converge. Recently, Sonker and Jin-
dal studied triple product summability for the better ap-
proximation. Rathore and Shrivastava worked on Euler-
Norlund product means. Krasniqi worked on the ap-
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proximation of functions belong to Lip class by Cesaro-Euler
means. However, nothing appears till to obtain the approxi-
mation of signals belong to W' (L, (t)),(p > 1), (t > 0)
using (N, pm, qm) (C, a0, 1) (E, 0) product operator of conju-
gate Fourier series. In comparison to the another established
product means, the proposed product transform can potentially
achieve faster convergence rates and more accurate approxi-
mations, especially for functions that are difficult to approx-
imate using traditional methods. Improved error estimates,
Robustness against noise and Flexibility in function classes
are another features of the proposed methods.

(D). Let > u,, be a given infinite series and {s,,} be the
sequence of its m'" partial sums. Let p = {p,,} be a non-
increasing, monotonic and +ive sequence such that

m
P, = E P — 00, AS M — 00.

w=0

(1..1)

P_1:p_1:O,Vi21.

For sequence ¢ = {¢»}, we define an increasing sequence
{R} as

R, =(p*q),, me wGw — 00, asm — oo (1..2)

w=0

represents the convolution product in which

Qm= qu—00, Qui=g¢1=0,¥i>1 (L3

w=0

(II). The transformation (sequence -to -sequence)

Z Pm—wqwSw

'HLw 0

(1.4)

gives the sequence {t,,} of the (N, py,, ¢:n) mean of {s,,}
(Borwein [4]). The infinite series »_ wu,, is (N, Pm, ¢m)
summable to s, if t% — S, as m — 00.

(I1I).
1 & ,
If Clom = p ZAfnilh Alsp —'s asm — oo,
m =0
(1..5)
the m* Cesaro means (a,n) with a + n > —1 of

{sm}, i.e. (see [6]) where A%TT = O (m*™), a +n >
—1and A" =1, then 3 u,, is Cesaro (C, o, 77) summable

to ‘s’ and denoted as C\&™.

av).

m

WZ <7;Z) 0™ hs, —s asm — oo,

h=0

If Ef =
(1..6)

then > u,, is Euler (¥, §) summable to ‘s’.

(V). The product of (N,pm,qm) with (C,a,n) (E,0)
gives (N, pm,qm) (Cya,n) (E,6) summabilty and repre-
sented by (NCE)P:4 "9

m

e 1 1
If (NCEREm = o me—thW
™ h=0 h

h
X ZA%:} A?Ef — 5 asm — 00
i=0
h
1 1
— A9—L AT :
R Zp hthDé+77 Z h—i <% (1+0)l

h= =0
xZ()H’ I s asm — 0o,

then the series > um is (N, pm,qm) (C,a,n) (E,0)
summable to the definite number ‘s’

(1.7)

(VD). Let s, — s implies EY (s,,) — s as m — oo.
Hence (E,f0) method is regular. Now we may write,
(NCE)50 = (NCYPS* (B8 (s,,)) — s as m — oc.

Therefore (N, pm, qm) (C, a, ) (E, 6) method is also regular.

Remark: If we put ¢, = 1 for all m € N, then
(N, pms qm) (Cya,m) (E,6) method reduces to ( N, p,,
) (C,a,m) (E, 0) summability method and if we put p,,, = 1
for all m € N, then (N, pm, ¢m) (Cya,m) (E, 6) reduces to
(N, qm) (C,a,n) (E,0) method.

(VII). Let a signal denoted by g having 27 as periodic
time and is integrable in the same way as of Lebesgue for the
limit (=, 7). Let

sm (g;7) = C%O-FZ (ap, cos hx) —I—Z (bp, sin ha) (1..8)
h=1

h=1

be the Fourier series and

(1..9)

be its conjugate series and m!" partial sum of (1..9)is

m m

T (g52) = Y (bncosha) — > (apsinhz) (1.10)

h=1 h=1

Definition 1: For g, the L,
and is given by

- norm is represented as ||¢||

llgllcoc =sup{lg (z)]:z € R} (1..11)

whereas L, - norm, is represented as ||g||,, defined for [0, 27]
and is given by

o 1/p
gl = { [ s |de} P>l

Definition 2: The approximation of g by t,,

(1..12)

(z) under ||.||0o



is given by Zygmund [3]] with
[tm — glloo = sup {|tm () — g ()| : 2 € R} (1..13)

and the Trigonometric approximation ),
defined as

(g)ofg € L, is

By (g) = min [t (g:) — g (2) | (1.14)
Definition 3: A real valued signal g is of Lipschitz class usually
denoted as g € Lipg if
—g@)|=0(t°),0<B<1,t>0
(1..15)

g (z +1)

and g € Lip (8, p) if

wy (t:g) = (/ 9+t —g (@) |pdx);

=0 (|t|°) foro<B<1,p>1,t>0.
(1..16)

For & (t) (+ve increasing signal) and p > 1, g € Lip (£ (¢),p)

if
wp (69) = (/ 9@ +1) - 9 () |de);

=0 (&) for p>1,t>0. (1..17)

For £ (t) and p > 1, a real valued signal g € W' (L?,€ (1)),
([10D), if

P

2T
wy (tg) = < [lote 0@ @ dz)
0
=0(&(t) for v>0,p>1,t>0. (1..18)

We redefine the weighted class ( [S]], [9]) to evaluate I » with-
out error and gives as

wntto)= ([ o0 -g@psn (3) dx>’17

=0(&(t) fory>0,t>0. (1..19)

If v = 0, then W' (LP, ¢ (t)) coincides with Lip (£(t),p),
and

W' (L7, € (1) 2= Lip (€(1), p) (1.20)
0=, Lip (8,p) 2== Lipg
for0<p<1l,p>1,t>0. (1.21)

Notations:

Yo (t) =g(z+1t)—g(z—1)

3

h

>

=0

jeosy+3)t (]+ )
25sin

1
A

1

5%%0"" ;0 .
(1+6)

a—1 Am
Pm—ndh — o1 h—i ‘Y

’;U

[A

Gi B

2
(1.22)

and 7 = [1] , the integral part of 1.

2. Known Results

Dealing with (E, q) (C, 6, 8 ) mean, Krasniqi [21]] have proved
the following theorems for a conjugate function g:

Theorem 2..0.1. I G belongs to the Lip « class, then its ap-
proximation by (E, q) (C, 0, B) means of is

g(z)| = (EC)

e a:0,8
m

@) -
1

=0 (1)

@2.1)
2.2)

sup [(EC)E" (g (x)) —
O<x<2m

lloo

,0< a< 1.

Theorem 2..0.2. If g belongs to the W (L, & (t)) class, then
approximation by (E, q) (C, 0, B) means of is given by

_— l 1
B @) gl =0 (m+ 17 (1))
2.3)
provided
ﬁ |¢'p (t) |> p Ed % =0 !
{/o < cw ) " (m+1)7 )
2..4)
and

1
t_6|¢x (t) | ? ! 0
— | dt =0 1 2.5
(& (tm+17) @9
For 0 (arbitrary number), g (1 —6) — 1 > 0, ]% + % =1,1<
p < oQ.
The conditions(2-4) and (2.3)) are always true in x and

L[ (2

Dealing with (E, q) (IV, p,,) product mean, Rathore and
Shrivastava [12]] have proved:

.

S

(2..6)

Theorem 2..0.3. If g belongs to the W (L,,, £ (t)) class, then
approximation by (E, q) (N, py,) product mean is given




by

BN @)-gl =0 (o + 07 e (1)) @

provided

U

w>psimptdt}p =0 ((mil)) ’

2..8)

and

(e dt}" =0 ((m+1)")
2.9)

{l

R —
m+1

For ¢ (arbitrary number), g (1 —6) — 1 > 0, % + % =1,1<
p < o0.
The conditions(2..8) and (2-9) are always true in x.

3. Lemma

Lemma 3..0.1. [D%79 (t)| = O [1], for0 < t <

(1+M)’

Lemma 3..0.2. |DP;%2%0 (¢) | = O

t<mt< WSiH(
Proof:

|5§dq;am;9( )| <

t < msin (%) and | cos (mt)| < 1.
Proof:
1 h
D50 ()| < :
‘ ()‘_27TR Aa+ ZO +9)'L
: 3 cos ] —|—
o7
% {JZ; (j) Sln = }
1 1 . 1
< e Ay—o AT .
= 27 R Zp AT Z; "+ 0y
e |cos( )t
X ) o
{2@ Ehi
1 & 1 & 1
< Pm—hh—rr Y An_l Al ;
27 Rom ; M g ; TN+ e)
’ {Z (J) " }
j=0 ™
m h 1
= o me hthZ+ 2% +9)z

{2;0 }

m h

1 1 -1
%R methhW ZAz—i A?
Y p=0 h

i=0
3.1
( ) (1+0) }

h
{ > AN AY

=0

_ A;H—n}

2

2

{

Aa+n

Jcos(]—i— )

t

97,

1=

f) [%],f0r0<(lfim)§
L . 1
27 R, Axtn ; A A (1+6)
zo<>e@ )
1 - AT AT

Zal n 1'
a h—i z(1+9)z

}

— m— Ay— AT .
R 'Zp htha+n prt h—i ‘44 (1+9)1
{ 91 i1 }
h
Rlz% e LA g
{ 02 J zgt} |€Z%‘
L 1
>~ ZtRm hzopm—hth&_‘_ ZO +0)1
xR 0 7e
A5 0)eer)
7=0
1 m h 1
+ m— -
% Ry Zp hth“ ;) 1+ 0)°

f

X Re <Z> §imIelt

(3.2)




Now, consider first term of (3..2), we have
1 T—1 h
QtR me thAa+ ZO
AN
x Re ) g It
{z() |
j=0
g 1
R me hth“* 2; 1+ 0)°

{ 01 ]} ||eijt

S s s 34 A1

=0

1+ e)i

<
- 2t.Rm

A

e 2 ()

2&% me hthaMz;Ag LAY
2tR me hqh { ZAE LAY = AO‘*”}

_o]l]

Using Able’s Lemma and considering second term of (3..2))

m h 1
Z mhtha+ ZO +9),L

O
1 d -1 n 1

1
i — —_— E AN Al .
D hqh atn h (1 9)1

T h =0

k .
> (5)oer
=0

Ms

<

l\D

t-Rom h

xmax0 <k <1

h

1 & 1 . 1
< r— _ ASTE AT .
=% R };—p hthOt+77 ; h—i ‘%4 (1+0)7,
XmaXO<k<zZ< )Ql J\ ”t|
Jj=0 J
1 & 1 & 1
_ . ASTL g4n .
2t Ry Zp han g Z:; T A+ 0)
xmax()<k<zz<])0' J
=0

m h
1 1 1
=) prnGh—arr Y AnZ; AY
2t.Ro, Z Ap ; T o)

1

x Z ( > 2t Rom
1

= m};—pmthh {

o[}

h

=0

=0

h
ZAg 1 AT = AW’}

(3..3)

me thAalJr,, D AT AT

From (3-3)) and (3-4),

‘E%q;amﬁ (t)‘ -0 {%} )

4. Main Theorem
Theorem 4..0.1. If a signal g with time period of

2w, integrable as Lebesgue for (—mw,m) and of class
W (LP,&(t)),(p > 1), (t > 0), then the approximation by

(NC’E)p’q;a’me product means of is given by

NCE P,q;o,m;0
i)

(:0)=lp = O (1 +m) & ((1+m)™")).
“..1)

IF{€(t)

)
(/ ﬂw (L}/)é)(gg)pdt); =0 ((1+1m)5> 4.3)

(1+m)
1 1 _
—5)q—1>0,;+§—1,1§

.t’l} is a non-increasing sequence,

0(1) (4.2)

For 0 (arbitrary number), (1
p < o0,
The conditions@.2) and @.3) are always true in x and

NC’E)p’q;a’me is (N, pm, qm) (C,a,n) (E, 6) summable of
and G (x) is defined by

t
= —213(1)/ g () cot (2) dt.

Proof: Let 75, (g; ) be the partial sum of the (1..10) and

is written as Zygmund [3]],
1
cos t
L[y,
T o sm 5

The (N(Z’E)]D’qw’m9 transform of "5, (g; z) is given by

27g (x “4.4)

|5 (95 7) —

|t£nNCE)p sgicmif

(g’ )7 ‘me hqh

h

1 a1 1
AOH'WZ h—i (1+9)

=0

e {s (g et

- / e (£) D5 (1) |dt.
’ (4.5)

}dt

By using the assumptions

/0 " (0 1577 (1)t = O (14 m)" 5 € (1 +m) ™))

(3.4) Now.

|t£nm)znq;a,n;0

(6:2) -7 = / e (8) || DL (1) |t



(1+m)

1 T —8+14+7)q—2 ‘
(1+m)5£(1:m)> [/1 S(5+14) dz}

- [ / el [T e @ (D (1) |dt
0 o=

o ) ) H(=0+147)a—1 v
_O<W§((1+m) )) [((_5+1+7)q—1);
3

= |Iia| + |12 (say) . (4..6)

Using Holder inequality, Lemma 1, condition (.2) and
(sint/2)™" < Fofor 0 <t <,

=0(&((1+m™) [(1+m) ]
I < / T g (0B (1)t — o (@rm™He(m™))
_m p 5 1 1
< </<1+m> <|¢g(gf)) | sin” (%)) dt) { ‘D + i 1,1<p< oo.} 4..8)
0
, ¢ 1 Putting equations [@-.7), @-8) in (#_.6), we get the proof of theorem
whmy (€ () |DBRenO (1) | dt]q o
J < sin” (¢/2) ) 1 go-gl= 0 (e my e (@ m) ).
=0(1) esssup [¢ (t)q]é [/(Hm) (t—l—'y)th:| * Thus
0<t< Ty 0

1
NCE p,qio,m;f p q;a,m;0 ?
=0 (g ( )> ess sup {/ (tl'y)th}
0 +1

1+m
+ 0<t< (s

( 1+m

O ((1+m)™) [éi_%/ew (tH)th] £((1+m)~") dev
=0 ((1 +m) e (1 +m)*1)) .

Q=

=0 [e((t+m)") (1 4+m)+ 4]
0 [(1 n )AH_; ¢ ((1 +m) 1)] which completes the proof of theorem.
= m) " p m
R (4.7)
Tp g i sPE ~'7 5. Graphical Analysis
. . oy . —1 T
Now, in view of Lemma 2, condition " (sint/2)"" < %, for Example 5..0.1. In first example, we consider a convergent oscilla-
0 < t < m,|sint/2| <1 and Holder’s inequality tory sequence
T ~ 6 am = (=1)""/(m* +m)
D,q;0,m;
[ha] < / o (e () 11D (8) dt Here, the sum of above oscillatory sequence upto first hundred terms
(T+m) .
ie.,
" sin” (¢/2) [¢= () )" .| "
= Vd) < () .19 d f=> am :{1—1/6+1/12—1/20+1/30—
x g a 14
. { / (5 (t) 25 [ DR (1) |) dt} T (—1)™ /(m? + m)}7
anY
T sin” (¢/2)
s () \? 5 £ (1) S_1 L is0.386228. The behaviour of g, {8m } and Error term is observed.
B o (t > /" ( t).t ) H
< dt SV ) g ere,
{ atm <£ (8).£° ] { atm sin” (£/2) {sm}=a1+aztas+.... + am,
1 ™ 1 4 7 The (N, pm, qm)(C, a,n)(E, 0) transform gmacs "E° of the m*"
=0 (1+m) 5 / (f (t) " 77) dt partial sums $m, of Y, am is defined as
(T+m)
(1+m) 4 : tm = tanp’qumEe = (NCE)Z:LQ””WQ
-0 (1 ) V ’ (g (1> z_5+1+'7) dz} & 1
= — .
a+m)?) )2 : “ = L Pnorh
h=0
{Putnngt = %} h
XZASZE ATE! s asm — oo
i=0
m h
1 1
- — Pm—hqh —— o i 7
R g A
X <‘)9i7j—>s asm — oo,
— \J
3=0

a+m)

q



X 86
sl ¥ 0386228
03t
£
E 0.2
5
[0
=
s X 90
Ls Y -1.33279e-74
0 P
01F g
Sm
s error
,0_2 b L L L L L L L
0 10 20 30 40 5 60 70 80 90

Number of terms (m)

Figure 1

error =t, — g

and variation is demonstrated by above figure. The alternating signs
result in a behavior that doesn’t grow indefinitely. Instead, the pos-
itive and negative terms tend to balance each other out, leading to
convergence. The computed value f ~ 0.386228 indicates that the
series converges to a specific limit.

Example 5..0.2. Here, we consider a convergent non-oscillatory
sequence

am =1/(n® 4+ 1)

the sum of above non-oscillatory sequence upto first hundred terms
ie.,

f=> am :{1 +1/10 4 1/28 4 1/82 4 1/244+

is 0.68642. The behaviour of g, {sm} and Error term is shown in
following plot.This series converges to approximately 0.68642. The
lack of oscillation means the terms steadily contribute to the overall
sum without the fluctuations as shown in Example 1.

1 T T T T T T T T T

X 77

08f Y 0.68642
.

0.6

0.4

0.2

X 90
Y -4.5847e-06

Value of terms
o

02F

04F

0.6

-0.8F m

1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90
Number of terms (m)

Figure 2

Similar to the first example, we track the cumulative sum s,

and analyze the error. The error behavior still tends towards zero,
showing convergence.The absence of oscillation leads to a more stable
convergence, as evident in the behavior of s,,.
From both of examples discussed above, we can conclude that by
proposed method, error sequence in each case is converging to 0’
i.e., O(1) which is theoritically proved in proposed theorems. It
can be observed that the oscillatory sequences can exhibit significant
fluctuations in partial sums, while non-oscillatory sequences have a
more predictable and steady convergence. Both types of sequences,
however, converge to their respective limits.

6. Corollaries

Corollary 6.0.1. Ify = 0 in theorem[4..0.1] then W' (L7, (1)),
(p > 1), (t > 0) reduces to Lip (£(t), p) .
The approximation of g € Lip (£(t), p) is

(W)P,q;am;@

It (g:2)=glly = O ((L+m)7 € (L+m) 7)),

Corollary 6..0.2. Ify = 0and £ (t) =1, 0 in theorem
the approximation of g € Lip (8, p), %

NCE p,q;a,m;0
15

_ 1
(g:2) = gll, = O ((1+m)~"5).
Corollary 6..0.3. Ify=0,¢(t) =tP for0 < 8 < land ifp — oo

in corollary then g € Lip(B3, p) reduces to Lip .
The approximation of g € Lip ( is

NCE)P 0
e

(g52) = glloo = O ((1 + m)‘ﬁ) .

7. Conclusion

This paper focuses on the approximation of signal belongs to
w’ (LP, & (¢)) class by (N, pm, gm) (C, a, ) (E, 8) product means
of conjugate Fourier series. Under general conditions, a new theorem
has been established and proven. The main theorem is generalizable
and can be reduced to familiar results. the error terms approach zero,
suggesting that the proposed method is effective in estimating the
sums of convergent sequences. This indicates that regardless of the
oscillatory nature of the series, the method can yield accurate results.
The results from approximating signals in the generalized weighted
Lipschitz class using the proposed method of product transform hold
significant potential for impact and application across various fields.
This method can improve signal reconstruction, allowing for more
accurate recovery of signals from incomplete or noisy data, which is
particularly valuable in audio and image processing. Furthermore, its
robustness against noise can enhance filtering techniques, making
them more effective in real-world scenarios where data contamination
is common. The method also has implications for advanced data
compression, enabling more efficient storage and transmission of
signals while preserving essential features and minimizing loss.
Additionally, the computational efficiency gained can facilitate
real-time processing applications crucial for telecommunications,
live video streaming, and interactive media. Future research could
explore extensions to nonlinear systems, adaptive algorithms that
adjust in real-time, and integrations with machine learning models to
enhance predictive capabilities.
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