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Resumen 

La noción de conjuntos neutrosóficos pitagóricos (PNS) y sus 

números neutrosóficos pitagóricos (PNN) asociados son útiles 

para explorar otro conocimiento impreciso con condiciones 

restringidas. Los investigadores creen que las PNS son capaces de 

eliminar deficiencias en las teorías existentes y son fácilmente 

aplicables en diversos problemas inciertos. Por otro lado, los 

operadores de Hamacher son útiles en la toma de decisiones de 

atributos múltiples (MADM). Por lo tanto, los operadores 

agregados neutrosóficos pitagóricos de Hamacher se consideran 

una herramienta poderosa para modelar la incertidumbre en 

problemas MADM. Este documento tiene como objetivo emplear 

los operadores t-norm y t-conorm de Hamachar para desarrollar 

algunos operadores de agregación de energía basados en PNN. Los 

operadores agregados incluyen el operador pitagórico de 

aritmética de potencia neutrosófica de Hamachar (PNHPA), el 

operador pitagórico de potencia neutrosófica de Hamacher 

(PNHPG), el operador pitagórico de potencia neutrosófica de 

Hamacher con promedio ponderado ordenado (PNHPOWA), el 

operador pitagórico de potencia neutrosófica de Hamacher con 

orden geométrica ponderada (PNHPOWG). También estudiamos 

algunas características importantes de estos operadores. Luego, al 

utilizar estos operadores, brindamos un enfoque para resolver los 

problemas de toma de decisiones de atributos múltiples bajo PNN. 

Al final, se muestra un ejemplo numérico para verificar el enfoque 

propuesto y proporcionar un análisis comparativo. 

 

Palabras clave: Operadores de Hamacher; Números neutrosóficos 

pitagóricos; Operadores de agregados neutrosóficos pitagóricos de 

Hamacher; MADM 

 

Abstract 

The notion of Pythagorean neutrosophic sets (PNSs) and their 

associated Pythagorean neutrosophic numbers (PNNs) are useful 

to explore another imprecise knowledge with the restricted 

conditions. Researchers believe that the PNSs are capable to 

remove deficiencies in the existing theories and easily applicable 

in various uncertain problems. On the other hand, the Hamacher 

operators are handy in multi-attribute decision-making (MADM). 

So, the Pythagorean neutrosophic Hamacher aggregate operators 

are considered to be the powerful tool to model uncertainty in 

MADM problems. This paper aims to employ the Hamachar t-

norm and t-conorm operators to develop some power aggregation 

operators based on PNNs. The aggregate operators include the 

Pythagorean neutrosophic Hamachar power arithmetic (PNHPA) 

operator, Pythagorean neutrosophic Hamacher power geometric 

(PNHPG) operator, Pythagorean neutrosophic Hamacher power 

ordered weighted average (PNHPOWA) operator, Pythagorean 

neutrosophic Hamacher power ordered weighted geometric 

(PNHPOWG) operator. We also study some important 

characteristics of these operators. Then, by using these operators, 

we give an approach to solve the multi-attribute decision-making 

problems under PNNs. In the end, a numerical example is shown 

to verify the proposed approach and furnish a comparative 

analysis. 

 

Keywords: Hamacher operators; Pythagorean neutrosophic 

numbers; Pythagorean neutrosophic Hamacher aggregate 

operators; MADM 

 

1 We are living in an era of uncertainty. So, we need to 

learn how to handle the uncertainty that we encounter in our 

daily processes. Traditional mathematics is not considered a 

useful tool to admit uncertain or vague knowledge. It is due 

to the complexity involved in human cognition. To cope with 

such information, researchers worked hard over the years. 

Finally, Zadeh [1] propounded fuzzy set (FS) theory in the 

year 1965. By FS, we define a particular class of objects with 

a spectrum of membership grades. The membership grade or 

membership degree of each element in a fuzzy set belongs to 

mailto:carlosgranadosortiz@outlook.es
mailto:somen008@rediffmail.com


BISTUA, Vol.22 (2), (2024) 

 

 2 

the interval 0,1 . Mathematicians and scientists have been 

studied the FS quite extensively and they applied it in soil 

science [2], industrial engineering [3], mathematical 

programming [4], supply chain coordination [5], production 

management [6], policy analysis, and information systems 

[7], etc. However, FS is useful to describe the measure of 

belongingness of an element by a membership function. But, 

we cannot utilize the FS to describe the incomplete 

information. This led to the foundation of intuitionistic fuzzy 

sets (IFSs), initiated by Atanassov [8]. Atanassov’s notion is 

very much logical and meaningful in the context of real 

decision-making (DM). IFS can be viewed as an extension of 

FS by introducing the non-membership function along with 

the membership function where the sum of the membership 

degree and the non-membership degree cannot exceed 1. The 

IFS has been used successfully in practical applications using 

the multi-attribute decision-making (MADM) method [9-12].  

A MADM method is a scientific approach under 

uncertain information where the decision-maker prioritizes 

an alternative based on multiple conflict attributes. In some 

practical applications, where the sum of the membership and 

the non-membership degree of an alternative influenced by 

multiple attributes is greater than 1, the decision-maker failed 

to describe it by using FS, IFS. To eradicate such an issue, 

Yager [13] introduced a new mathematical tool known as the 

Pythagorean fuzzy set (PFS). The PFS is an improved version 

of IFS where the sum of the squares of the membership and 

the non-membership degree does not exceed 1. So, the PFS 

is a more powerful and significant tool as it can easily 

accommodate the FS and IFS information with ease. The 

essence of PFSs in the field of MADM problems are given as 

follows: Tao et al. [14] developed MADM with PFSs via 

IFSs and ORESTE method. Lin et al. [15] introduced the 

multi-attribute group decision-making based on linguistic 

Pythagorean fuzzy interaction Bonferroni mean aggregation 

operators. Paul et al. [16] used the advanced Pythagorean 

fuzzy weighted geometric operator in MADM for real estate 

company selection. Garg [17] initiated the linguistic PFSs 

and apply them in the MADM problems. Khan et al. [18] 

developed the grey method for MADM under PFS 

information. Wan et al. [19] introduced a novel Pythagorean 

group decision-making method associated with evidence 

theory and interactive power averaging operator. Wan et al. 

[20] defined Pythagorean fuzzy mathematical programming 

for MADM with Pythagorean fuzzy truth values. Xu et al. 

[21] developed the Pythagorean fuzzy interaction Muirhead 

means and apply it for multi-attribute GDM. But, we give 

some instances where the non-membership information 

provided by the decision-makers cannot be explained using 

IFS and PFS. For example, suppose in a certain domain, 

according to the decision-maker, the membership and the 

non-membership degrees of an item are 0.8 and 0.7 

respectively, which is absurd in the context of IFS and PFS. 

To understand such knowledge, a q-rung orthopair fuzzy set 

(q-ROFS) is introduced by Yager [22]. In q-ROFS, the sum 

of the qth powers of the membership and the non-membership 

degree is limited to 1. Practically, the q-ROFS seems to be 

more functional than the IFS and PFS.  

None of FS, IFS, PFS, and q-ROFS is capable to describe 

the indeterminate, inconsistent, and incomplete information. 

To take care of such an issue, Smarandache [23] introduced 

neutrosophic set (NS) theory. In NS, every alternative is 

characterized by a truth-membership degree, indeterminate-

membership degree, and a false-membership degree. If we 

consider a subclass of a NS, where the truth-membership 

( )( )A x and the false-membership degrees ( )( )A x  are 

dependent and the independent indeterminate-membership 

degree ( )( )A x such that

( ) ( ) ( )0 2A A Ax x x   + +  , which is still a more 

powerful tool than FS, IFS, and PFS. Although, we may 

witness many instances where

( ) ( ) ( ) 2A A Ax x x  + +  , which cannot be studied 

under this neutrosophic subclass. But, by the combination of 

NS and PFS, Jansi et al. [24] introduced a new mathematical 

tool known as Pythagorean neutrosophic set (PNS) with 

dependent truth and false neutrosophic components such that

( ) ( ) ( )2 2 2 2A A Ax x x  + +  . For example, if we 

consider ( ) 0.7A x = , ( ) 0.8A x = , and ( ) 0.9A x = , 

than it can be easily shown that

( ) ( ) ( ) 2A A Ax x x  + +   but 

( ) ( ) ( )2 2 2 1.94 2A A Ax x x  + + =  . Some recent 

studies based on PNS have been proposed in [25-27]. Thus, 

PNS is another class of NS that has its applicability under 

inherent restrictions. To give a brief insight into the proposed 

study based on Hamacher operations, see the following Fig 

1. 

 
 Fig 1. Hierarchy formation of the proposed study based on 

Hamacher operations 

 

 Hamacher [28] proposed the more sophisticated 

Hamacher t-norm and t-conorm operators and developed 

various aggregate operations that are useful in solving 

MADM problems. After that, Roychowdhury et al. [29] 

introduced some connective generators based on the 

Hamacher family. For group decision-making (GDM), Liu 

[30] proposed some Hamacher aggregation operators on 

interval-valued intuitionistic fuzzy numbers. Zhou et al. [31] 
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solved the hesitant fuzzy Hamacher aggregate operators 

based MADM problem. Huang [32] gives another Hamacher 

aggregation operator based on IFS. Liu et al. [33] propounded 

the Hamacher aggregation operators on neutrosophic 

numbers and apply them in the GDM problem. For more 

MADM problem-based work associated with Hamacher 

aggregation operators over the dual hesitant bipolar fuzzy set, 

dual hesitant Pythagorean fuzzy set, hesitant Pythagorean 

fuzzy set, Pythagorean fuzzy set, Pythagorean hesitant fuzzy 

set (see[34-38]) respectively. Furthermore, Wu et al. [39] 

initiated some Hamacher operators under single-valued 

neutrosophic 2-tuple linguistic information and utilize it to 

solve a kind of MADM problem. To evaluate land 

reclamation strategy for mines, Liang et al. [40] deployed 

Hamacher operators under linguistic neutrosophic sets. 

Bipolar fuzzy Hamacher aggregation operators are defined in 

[41]. Zhu et al. [42] presented Hamacher t-norm and t-

conorm operators on hesitant fuzzy linguistic sets. Wei [43] 

pointed out the Hamacher power aggregation operators over 

the Pythagorean fuzzy set for MADM. Application of dual 

hesitant bipolar fuzzy set-based Hamacher aggregation 

operations for MADM [44]. Picture fuzzy set-based 

Hamacher aggregation operators used in enterprise 

assessment [45]. Wang et al. [46] used the notion of dual 

hesitant q-ROFS based Hamacher aggregation operators in 

scheme selection. Waseem et al. [47] utilized the m-polar 

fuzzy Hamacher aggregation operators in MADM. Some 

more Hamacher aggregation operators on q-ROFS with 

modified EDAS method in MADM [48]. Akram et al. [49] 

developed the complex picture fuzzy set-based Hamacher 

operators in decision-making. Ullah et al. [50] calculate the 

performance of search and rescue robots with an aid of T-

spherical fuzzy Hamacher aggregation operators. Wang et al. 

[51] measured the entropy weight to assess the service quality 

by using the interactive Hamacher power aggregation 

operators under Pythagorean fuzzy information. 

The main motivation to propose the present study is that 

there are no such previous research work that have been done 

so far that is based on Pythagorean neutrosophic Hamacher 

aggregation operators. That’s why, in our study, we have 

introduced a new type of Hamacher aggregate operator which 

helps to tackle another type of information that is more often 

present in human cognition.  

Giving preference to the decision-makers opinion to 

address uncertainty under different information domains, a 

brief analysis of different types of fuzzy sets and the PNS is 

exhibited in Table 1.  

 

1.1 Motivation 

In the above literature review, it has been observed that 

several works are using Hamacher operators under fuzzy 

logic and neutrosophic logic have been carried out 

successfully by the researchers to solve uncertain decision-

making problems. Getting motivation from the research work 

proposed in [52], we believe that there is no such study ever 

been introduced that is associated with PNNs via Hamacher 

operators and their application in MADM problems. Keeping 

this in mind, we have undertaken this proposed study to 

encounter another type of uncertain information close to 

human thinking.  

 

 Table 1. Decision-makers view under the different domains 

of information. 

 
1.2 Framework of the Paper   

The rest of the paper is arranged as follows: 

In section 2, we have studied some preliminary concepts 

related to Pythagorean neutrosophic numbers and their 

properties. We also defined Hamacher operations based on 

Pythagorean neutrosophic numbers. Section 3 includes two 

types of Pythagorean neutrosophic Hamacher power 

aggregation operators and their important properties. A new 

decision-making model based on Hamacher operators via 

Pythagorean neutrosophic numbers is exhibited in section 4. 

This proposed model is successfully executed with the help 

of a practical example in section 5. Finally, we conclude 

section 6.     

2. Preliminaries 

2.1 Pythagorean Neutrosophic Set 

In this section, we first give the basic notion of the 

Pythagorean neutrosophic set (PNS) [27] and its associated 

Pythagorean neutrosophic number (PNN). Basic operations 

on PNNs are newly introduced. Then, the novel score and 

accuracy function is based on PNNs. Afterward, a new 

comparison method between two PNNs is developed.  

Definition 2.1.1[24, 27] 

Let X  be a set of the universe. A Pythagorean 

neutrosophic set A on X  is an object of the form  

( ) ( ) ( ) , , , :AA AA x x x x x X  =  , where

( )A x , ( )A x  and ( )A x respectively denote the 

acceptance degree, indeterminate degree and the non-

acceptance degree such that 

( ) ( ) ( )  , , 0,1AA Ax x x    , 

( ) ( )0 1AA x x  +   and 

( ) ( ) ( )2 2 20 2AA Ax x x   + +  , for all x X . 

It is to be noted that, , ,   denotes a Pythagorean 

neutrosophic number corresponding to a Pythagorean 

neutrosophic set.  

Definition 2.1.2 [24, 27] 
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Let ( ) ( ) ( ) , , , :AA AA x x x x x X  =  and 

( ) ( ) ( ) , , , :B B BB x x x x x X  =  be two 

Pythagorean neutrosophic sets over X . Then, we consider 

the following properties: 

(i) 

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) , max , ,max , ,min , :B A B A BAA B x x x x x x x x X     =   

(ii) 

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) , min , ,min , ,max , :B A B A BAA B x x x x x x x x X     =   

(iii) ( ) ( ) ( ) , , , :c

A A AA x x x x x X  =   

(iv) A B if and only if 

( ) ( ) ( ) ( ),B BA Ax x x x     and ( ) ( )BA x x   

Definition 2.1.3 Let
1 1 1 1, ,   = , 

2 2 2 2, ,   = and , ,   = be three PNNs. Then, 

some basic operations on them are defined as follows: 

(i) 

2 2 2 2 2 2 2 2

1 2 1 2 1 2 1 2 1 2 1 2. , . , .           = + − + −  

(ii) 
2 2 2 2

1 2 1 2 1 2 1 2 1 2. , . , .         = + −  

(iii) 

( ) ( )2 21 1 , 1 1 , , 0
 

     = − − − −   

(iv) ( )2, 1 1 , 0


      = − −   

(V) , ,c    =  

Definition 2.1.4 

Let , ,   = be a PNN. Then, a score function $ on 

 is represented as follows: 

( ) ( )2 2 21
$ 1

3
   = + + − , ( )  $ 0,1   

Definition 2.1.5  

Let , ,   = be a PNN. Then, accuracy function # 

on  is represented as follows: 

( ) ( )2 2 21
#

2
   = + + , ( )  # 0,1   

Definition 2.1.6 

Let
1 1 1 1, ,   = , 

2 2 2 2, ,   = be two PNNs. 

Their scores and accuracy functions are represented by 

( ) ( )1 2$ ,$  and ( ) ( )1 2# ,#  respectively. If

( ) ( )1 2$ $   , then 1 is smaller than 2 i.e. 1 2   ; if

( ) ( )1 2$ $ =  , then we have the following: 

(i) If ( ) ( )1 2# # =  , then 1 = 2  

(ii) If ( ) ( )1 2# #   , then 1 < 2  

2.2 Hamacher Operations on Pythagorean 

Neutrosophic Numbers 

Definition 2.2.1 [28] Let ,  be any two real numbers 

where ( ) ( ) ( ), 0,1 0,1    with 0  . Then 

Hamacher’s t-norms and t-conorms are defined as 

( )
( )( )

,
1

H


   
    

=  =
+ − + −

 

and ( )
( )

( )

* 1
,

1 1
H

    
   

 

+ − − −
=  =

− −

respectively.  

Definition 2.2.2 

Let
1 1 1 1, ,   = , 

2 2 2 2, ,   = and 

, ,   = be three PNNs and 0  . Based on 

definition 2.2.1, some basic operations on PNNs are defined 

as follows: 

( )

( )

( )

( ) ( )( )

2 2 2 2 2 2 2 2 2 2 2 2

1 2 1 2 1 2 1 2 1 2 1 2 1 2
1 2 2 2 2 2 2 2 2 2

1 2 1 2 1 2 1 2

. 1 . . 1 . .
, , ......(1)

1 1 . 1 1 . 1 .
H

               

           

 + − − − + − − −
    =
 − − − − + − + −
 

 

( )( ) ( )( )
( )

( )

2 2 2 2 2 2

1 2 1 2 1 21 2 1 2
1 2 2 22 2 2 2 2 2 2 2

1 21 2 1 2 1 2 1 2

. 1 .. .
, , , .......(2)

1 1 .1 . 1 .
H

         

             

 + − − −
    =
 − −+ − + − + − + −
 

 

( )( ) ( )

( )( ) ( )( )( )

( )( ) ( )

( )( ) ( )( )( ) ( )( ) ( )

2 2 2 2

2 2 2 2 2 2

1 1 1 1 1 1
, , ........(3)

1 1 1 1 1 1 1 1 1 1 1 1

   


   


       


           

 
+ − − − + − − − 

 =  
+ − − − − + − − − − + − − − −

 

 

( )( ) ( ) ( )( ) ( )

( )( ) ( )

( )( ) ( )( )( )

2 2

2 22 2 2 2

1 1 1
, , ........(4)

1 1 1 11 1 1 1 1 1 1 1

 
 



 
 

     

          

 
+ − − − 

 =  
+ − − − − + − − − − + − − − −

 

 

3. Pythagorean Neutrosophic Hamacher Power 

Aggregation Operators 

3.1. Pythagorean Neutrosophic Hamacher Power 

Arithmetic Aggregation Operators and their Properties 

Definition 3.1.1 Let ( ), , 1,2,...,l l l l l n   = =

denotes a collection of PNNs. Then, we define the 

Pythagorean neutrosophic Hamacher power arithmetic 

(PNHPA) operator as follows: 

( )1 2 3 1

1

1
1

( , , ,......, ) n

n l l

T l
n T ll

PNHPA

   
        

  
   

  

=

+ 

+  =
    =  

, where 1,2,...,l n= , ( ) ( )
1,

sup ,
n

l l mm m l
T

= 
 =  

with the properties: 

(i) ( )  sup , 0,2 wherel m l m     

(ii) ( )sup ,l m  = ( )sup ,m l   
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(iii)

( ) ( )sup , sup , wherel m p q l m p q        , if

( ) ( ), ,l m p qd d     , where d is the distance 

measure. 

 
(iv)sup( , ) sup( , ) sup( , )l m l p p m     +  

 

 Example 3.1.2 To make proper justification of the 

properties mentioned in the definition 3.1.1, we consider the 

following example: 

 Let

( ) ( ) ( )1 2 30.6,0.5,0.3 , 0.7,0.8,0.2 , 0.5,0.9,0.4 =  =  =

, and ( )4 0.6,0.8,0.3 = be 4 PNNs. Then  

( )
( ) ( ) ( ) ( ) ( ) ( )

2 2 2 2 2 2

1 2 1 2

0.6 0.7 0.5 0.8 0.3 0.2
sup( , ) 2 , 2

2

1.715

d
− + − + −

  = −   = −

=

 

Similarly, 1 3 2 3sup( , ) 1.63, sup( , ) 1.735  =   = , 

and 3 4sup( , ) 1.825  =  

Therefore, (i) and (ii) hold true. 

Now, ( )3 4,d   =0.175 and ( )1 2, 0.285d   =  

Clearly, ( ) ( )3 4 1 2, ,d d     but 

3 4 1 2sup( , ) sup( , )     which gives (iii) true. 

Also, 1 2 1 3 3 2sup( , ) sup( , ) sup( , )     +   justify 

(iv) 

Based on the definition 3.1.1, we discuss the following: 

Theorem 3.1.3 The aggregate value using PNHPA 
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where ( ) ( )
1,

sup ,
n

l l ml m l
T

= 
 =   . 

Definition 3.1.4 Let ( ), , 1,2,...,l l l l l n   = =

denotes a collection of PNNs, ( )1 2, ,....,
t

n   = be the 

weight vector of l , and 0l  such that
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l
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where, ( ) ( )
1,

sup ,
n

l l l ml m l
T 

= 
 =   . 

If 
1 1 1

, ,...,

t

n n n


 
=  
 

then the PNHPWA operator 

reduces to PNHPA operator where 

( ) ( )
1,

1
sup , .

n

l l ml m l
T

n = 
 =    

Now, we consider the following propositions, based on 

PNHPWA operator that can be easily proved. 

Proposition 3.1.5 (Idempotency) If 

( )1,2,..,l l n =  = i.e. all PNNs are equal, then 

( )1 2, ,...., nPNHPWA    = . 

Proposition 3.1.6 (Boundedness) Let 

( ), , 1,2,...,l l l l l n   = = be a collection of PNNs, 

where ( )1minn

l l

−

=  =  , ( )1maxn

l l

+

=  =  then

( )1 2, ,...., nPNHPWA− +       . 

Proposition 3.1.7 (Monotonicity) Let l and 
/

l  

( )1,2,...,l n= be two set of PNNs having the same 

dimension. If 
/

l l   for all l , then

( ) ( )/ / /

1 2 1 2, ,...., , ,....,n nPNHPWA PNHPWA      

. 

Definition 3.1.8 Let ( ), , 1,2,...,l l l l l n   = =

be a collection of PNNs. Then, the Pythagorean neutrosophic 
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Hamacher power ordered weighted arithmetic(PNHPOWA) 

operator of dimension n is a mapping 

: nPNHPOWA F F→ with weight vector 

( )1 2, ,....,
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1.
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Where ( )l is a permutation of 1,2,...,l n= such that 

( ) ( )1l l −
   for all l , and ( )1,2,...,l l n = is a 

collection of weights. 

3.2. Pythagorean Neutrosophic Hamacher Power 

Geometric Aggregation Operators and their Properties 

Definition 3.2.1 Let ( ), , 1,2,...,l l l l l n   = =

denotes a collection of PNNs. Then, we define the 

Pythagorean neutrosophic Hamacher power geometric 

(PNHPG) operator as follows: 
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Based on definition 3.2.1, we discuss the following: 

Theorem 3.2.2 The aggregate value using PNHPG 
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= 
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Definition 3.2.3 Let ( ), , 1,2,...,l l l l l n   = =
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 



( )( )( )

( )( )
( )( )

( ) ( )

( )( )

( )( )

( )( )

( )( )
( )( )

( )
( )( )

( )( )

( )( )

( )( )
( ) ( )( )

( ) ( )
( )( )

( )( )

1

1

1
1

1

1

1
1

1

1

1 1
1

1

3 1

12

1 1

1

12 2

1

1

12 2

1

,

1 1 1 1

1 1 1

1 1 1 1

n
l

Tl l
l l

n Tl l nl

l ll

Tl l l l
n Tl l nl

l ll

Tl l l l
n Tl l nl

l ll

T

n n
T

l l

l l

T

n n
T

l l

l l

T

n n
T

l l

l l











 













   

  

   

 =

+ 

+  =

=

+ 

+  =

=

+ 

+ − +  =

=

+ 

+ 

= =

+ 

+ 

= =

+ 

+ 

= =

+ − − + −

+ − − −

+ − + − −

 

 

 

......(9)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

where, ( ) ( )
1,

sup ,
n

l l l mm m l
T 

= 
 =   . 

Now, we consider the following propositions, based on 

PNHPWA operator that can be easily proved. 

Proposition 3.2.4. (Idempotency) If 

( )1,2,..,l l n =  = i.e. all PNNs are equal, then 

( )1 2 1, ,...., n

n l lPNHPWG =   =  = . 

Proposition 3.2.5. (Boundedness) Let 

( ), , 1,2,...,l l l l l n   = = be a collection of PNNs, 
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where ( )1minn

l l

−

=  =  , ( )1maxn

l l

+

=  =  then

( )1 2, ,...., nPNHPWG− +       . 

Proposition 3.2.6. (Monotonicity) Let l and 
/

l  

( )1,2,...,l n= be two set of PNNs having the same 

dimension. If 
/

l l   for all l , then

( ) ( )/ / /

1 2 1 2, ,...., , ,....,n nPNHPWG PNHPWG      

. 

Definition 3.2.7 Let ( ), , 1,2,...,l l l l l n   = =

be a collection of PNNs. Then, the Pythagorean neutrosophic 

Hamacher power ordered weighted geometric(PNHPOWG) 

operator of dimension n is a mapping 

: nPNHPOWG F F→ with weight vector 

( )1 2, ,....,
t

n   = such that 0l  such that

1

1.
n

l

l


=

=
 

Then, 

( ) ( )( )
( )( )( )( )

( )( )( )

( )( )

( )( )( )
( )( )( )

( ) ( )( )( )

( )( )( )
( )( )( )

( ) ( )( )
( )( )( )

( )( )( )

( )( )

( )( )( )
( )( )( )

( ) ( )( )( )

1

1

1
1

1

1
1

1

1

1
1

1

1
1 2 3 1

1

3 1

12

1 1

1

2

, , ,...,

,

1 1 1 1

1 1 1

l l

n

l ll

Tl l

n Tl ll

Tl l

l ln Tl ll
n

l ll

Tl l

n Tl ll

l

T

n T
n l l l

n

l

l

T

n n
T

l l

l l

n

l

l

l

PNHPOWG





 

 

 


 



 

 














 







 

   

 

 

=

+ 

+  =

+ 

+  =

=

+ 

+  =

+ 

+ 
=

=

+ 

+ 

= =

=

    =  

+ − − + −

=

+ − −



 



( )( )( )
( )( )( )

( ) ( )( )
( )( )( )

( )( )( )

( ) ( )( )

( )( )( )
( )( )( )

( )( )
( )( )( )

( )( )( )

( ) ( )( )

( )( )( )
( ) ( )( )( )

( ) ( )( )
( )( )( )

( )( )( )

1

1
1

1

1

1
1

1

1

1 1
1

1

3 1

1

1 1

1

12 2

1

1

12 2

1

,

1

1 1 1

1 1 1 1

T l

l ln Tl ll
n

l ll

Tl l
l l

n Tl ll n

l ll

Tl l
l l

n Tl ll n

l ll

T

n n
T

l

l l

T

n n
T

l l

l l

T

n n
T

l l

l l




 



 


 



 


  













 





 

 

  

   

+ 

+  =

=

+ 

+  =

=

+ 

+ − +  =

=

+ 

+ 

= =

+ 

+ 

= =

+ 

+ 

= =

+ −

+ − − −

+ − + − −

 

 

 

.....(10)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Where ( )l is a permutation of 1,2,...,l n= such that 

( ) ( )1l l −
   for all l , ( )1,2,...,l l n = is a collection of 

weights. 

4. Decision-Making Model Based on Hamacher 

Operators under Pythagorean Neutrosophic Information 

Decision-making is an important issue in many 

conflicting computational methods. Recently, the use of 

multi-attribute decision-making (in short MADM) is 

considered to be an effective and popular scientific tool for 

real decision-making under uncertainty. It provides high 

precision and accuracy to reach an ultimate goal while 

handling various complex decision-making problems. 

According to researchers and scientists, the MADM 

mechanism is a powerful, significant, effective, and 

systematic way to deal with problems that involve several 

alternatives influenced by several conflicting criteria. 

Decision-makers can make accurate and flexible decisions by 

using MADM approaches in different fields. So, in this 

section, we attempt to make use of the Hamacher aggregation 

operators based MADM technique under the Pythagorean 

neutrosophic environment. For this, we consider the 

following MADM model that helps us to make precise 

decisions under Pythagorean neutrosophic information: 

Let us consider the set of attributes

 1 2, ,......, pA A A A= , set of alternatives

 1 2, ,......, qB B B B= , and  1 2, ,......, q   = be 

the weight vector of attributes such that 0k  , 

1,2,...,k q= ,
1

1
q

kk


=
= . Moreover, let  

( )M ij q p
D d


= = ( ), ,ij ij ij

q p
  


=

11 11 11 12 12 12 1 1 1

21 21 21 22 22 22 2 2 2

1 1 1 2 2 2

, , , , ......... , ,

, , , , .......... , ,

, , , , .......... , ,

p p p

p p p

q q q q q q qp qp qp
q p

        

        

        


 
 
 
 
 
 
 
 

 

be a Pythagorean neutrosophic decision matrix. The 

entries , ,ij ij ij q p
  


corresponding to the 

thi alternative 

that satisfies the 
thj attribute under Pythagorean 

neutrosophic environment satisfy the condition

 , , 0,1ij ij ij    such that 0 1ij ij  +  and 

2 2 20 2, 1,2,.., ; 1,2,..,ij ij ij for i q j p   + +  = =

.  

In the following, we consider a stepwise MADM model 

based on PNHPWA (or PNHPWG) operator for the 

scientific evaluation of emerging performing insurance 

companies under Pythagorean neutrosophic environment. 

 

Step 1 Input the imprecise data provided by the decision-

maker under the PNS environment in the form of a set of 

attributes  1 2, ,......, pA A A A=  , set of alternatives

 1 2, ,......, qB B B B= . Then obtain the decision matrix 

MD provided that the set of alternatives is influenced by the 

set of attributes. Also, we consider the set of weight vectors 

associated with the set of attributes as

 1 2 1
, ,......, , where 1.

p

p ii
    

=
= =  

Step 2 Using definition 3.1.1, calculate the following 

supports: 
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( ) ( )sup , 2 , , 1,2,.., ; , 1,2,..,qij ik ij ikd where i p j k  = −   = =

. And we calculate the distance measure ( ),ij ikd   with 

normalized Hamming distance under PNS as 

( )
( )2 2 2 2 2 2

, , 1, 2,.., ; j, k 1,2,..,
2

ij ik ij ik ij ik

ij ikd i p q
     − + − + −

  = = =  

Step 3 Utilizing the weights i  associated with the 

attributes ( 1,2,.., )iA i p= , calculate the weighted support

( )ijT  defined by

( ) ( )
1,

sup , , 1,2,..,
p

ij k ij ikk j k
T j q

= 
 =   = .  

Also, calculate the weight
ijW associated with the 

Pythagorean neutrosophic number 
ij

( )1,2,.., ; 1,2,..,i p j q= =  

( )( )
( )( )1

1
, 1,2,.., ; 1,2,..,

1

i ij

ij p

i iji

T
W i p j q

T




=

+ 
= = =

+ 
, 

where
1

0 , and 1
p

ij iji
W W

=
 = . 

Step 4 Calculate the aggregate values of the decision-

matrix based on the MADM problem using the PNHPWA 

(or PNHPWG) operator defined in section 3. 

Step 5 Find the scores ( )$ i of the aggregate PNNs i . 

Then we arrange all the alternatives according to the 

magnitude of their scores and finally select the best choice 

having maximum scores. In case of a tie i.e. if

( ) ( )$ $ ,i j i j =   , then we need to calculate the 

accuracy values ( )# i and ( )# j .  Once again rank them 

according to the magnitude of their accuracy values and thus 

choose the best option having the highest accuracy value. 

Step 6   End 

5. Numerical Example  
Nowadays people from all over the world are interested 

to ensure avoiding any kind of loss that may occur due to 

uncertain phenomena in everyday life. To safeguard their life 

and reduce loss in business or any kind of profession, they 

searching for a good performing insurance company. 

Insurance provides financial support and reduces sudden risk 

in any profession in life. So, we always are looking for a good 

performing insurance company that gives maximum 

safeguard with a less yearly premium. But, our problem is, 

how to select the best insurance company with an affordable 

yearly premium that provides cover in any loss due to 

uncertainty.  To run an insurance company effectively there 

is a lot of issues such as risk management (RM), 

organizational performance (OP), strategic decisions (SD), 

and corporate governance (CG). RM is a process of 

analyzing, assessing, monitoring, and controlling risk for 

better decision-making and it is an important factor for the 

survival and profitability of an insurance company. OP 

mitigates the goals and objectives of a company. SD is 

concerned with organizational activities and they are 

uncertain. CG provides the framework for achieving a 

company’s goals and objectives. Utilizing the stepwise 

MADM model proposed in section 4, we give a practical 

example to select the best performing insurance company 

influenced by certain conflicting criteria under the PNS 

environment: 

Step 1 

We consider a set of five insurance companies(IC) or 

alternatives denoted by the set  1 2 3 4 5, , , ,C c c c c c= and a 

panel of experts suggests a set of four attributes or criteria 

denoted by the set  1 2 3 4, , ,A a a a a= to select the best 

performing insurance company. The four attributes are 

defined as: 1a =RM, 2a =OP, 3a =SD, and 4a =CG. And the 

weighting vector of the four attributes is denoted by

( )0.3,0.2,0.1,0.4
T

 = . To select the best alternative 

which fulfills all the given criteria, we utilize the proposed 

MADM model given in section 4.  

The evaluation of the five IC can be evaluated by the PNS 

information by the expert under the four attributes and it can 

be represented by the following decision matrix: 

1

2

3

4

5

0.3,0.4,0.5 0.4,0.5,0.2 0.1,0.5,0.3 0.2,0.5,0.6

0.3,0.6,0.5 0.6,0.2,0.4 0.4,0.6,0.3 0.4,0.5,0.3

0.5,0.7,0.3 0.4,0.3,0.5 0.3,0.1,0.5 0.6,0.3,0.2

0.4,0.3,0.6 0.4,0.8,0.3 0.5,0.4,0.3 0.3,0.4,0.5

0.2,0.3,0.6

M

c

c

D c

c

c

=

1 2 3 4

0.3,0.7,0.2 0.5,0.4,0.3 0.2,0.6,0.5

a a a a

 
 
 
 
 
 
 
 

 

Step 2 & Step 3 

For 1c , we determine the following: 

 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1 1 2 1 1 3 1 1 4

1 1 2 1 1 3 1 1 4

1 1 1 2 1 3 1 4

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2

sup , sup , sup ,

2 , 2 , 2 ,

6 , , ,

0.3 0.4 0.4 0.5 0.5 0.2

2

0.3 0.1 0.4 0.5 0.5 0.3
6 0.3 0.3

2

0.3 0.2 0.4 0

d d d

d d d

   

  

 

 =   +   +  

= −   + −   + −            

= −   +   +    

− + − + −
+

− + − + −
=  − +

− + − 2 2 2.5 0.5 0.6

2

1.6576

 
 
 
 
 
 
 

+ − 
 
 

=

 

 

( ) ( ) ( ) ( )2 2 2 1 2 2 3 1 2 4sup , sup , sup ,

1.099

    =   +   +  

=
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( ) ( ) ( ) ( )3 3 3 1 3 3 2 3 3 4sup , sup , sup ,

0.55

    =   +   +  

=
 

( ) ( ) ( ) ( )4 4 4 1 4 4 2 4 4 3sup , sup , sup ,

2.202

    =   +   +  

=
 

In a similar manner we obtain these values for 2 3 4, ,c c c

and for the sake of simplicity we have listed them in a tabular 

form given by: 

 

       ( )1       ( )2        ( )3         ( )4   

1c    1.6576       1.099        0.55       2.202 

2c    1.6125      1.025        0.553     2.088 

3c    1.528       1.089         0.524     2.094 

4c    1.575       0.99          0.534      2.144 

 5c    1.545       1.03         0.517      2.132 

 

 

Step 4 Utilizing the above 5 sets of values and the 

PNHPWA operator defined in definition 3.1.4, we obtain the 

aggregate preference values of each IC, ( )1,2,3,4,5ic i =

and they are denoted by ( )ic . Suppose 3 = then the 

preference values are given by: 

( ) ( )1 0.561,0.647,0.478c = ,

( ) ( )2 0.03,0.873,0.227c = ,

( ) ( )3 0.325,0.298,0.165c = ,

( ) ( )4 0.81,0.437,0.302c = and 

( ) ( )5 0.468,0.729,0.286c =  

Step 5 Using the definition 2.1.4, we obtain the scores of 

each ( )ic denoted by ( )( )$ , 1,2,3,4,5ic i =  

( )( )1$ c =0.501, ( )( )2$ c =0.56, ( )( )3$ c =0.38, 

( )( )4$ c =0.58, and ( )( )5$ c =0.55 

 Now rank all the insurance companies’ performance 

according to their corresponding scores 

( )( )$ , 1,2,3,4,5ic i = we have, ( )( )4$ c

( )( )2$ c ( )( )5$ c ( )( )1$ c ( )( )3$ c i.e. 

3 1 5 2 4c c c c c . Therefore, the best-performing 

insurance company preferred by the decision-maker is 4c . 

Thus, 4c is the most desirable alternative based on the 

prescribed alternatives suggested by the decision-maker. 

Step 6 End 

Note: It is to be noted that, there should not be any change 

in the order of the rankings of the alternatives if we assign 

any value of 1  . 

5.1. Comparative analysis 

Now a natural question arises that is there any changes in 

the order of the rankings of the alternatives or it will remain 

the same if we utilize the PNHPWG operator defined in 

definition 3.2.3. To get an exact idea, we find out the 

following: 

We repeat up to step 3 

Step 4 If we use the PNHPWG operator defined in 

definition 3.2.3 then obtain the results given by: 

( ) ( )/

1 0.005439,0.117,0.260c =  

( ) ( )/

2 0.00948,0.012,0.1484c =  

( ) ( )/

3 0.01353,0.00919,0.099c =  

( ) ( )/

4 0.00827,0.0105,0.248c =  

And 

 ( ) ( )/

5 0.0096,0.0131,0.2404c =  

Step 5 Score values of the aggregates are given by 

( )( )/

1$ c =0.3153, ( )( )/

2$ c =0.3260, ( )( )/

3$ c

=0.3301, ( )( )/

4$ c =0.3128, and ( )( )/

5$ c =0.31415 

Clearly, ( )( )/

4$ c ( )( )/

5$ c ( )( )/

1$ c

( )( )/

2$ c ( )( )/

3$ c  

Thus, 3c is the optimal choice for the decision-maker 

Comparisons based on two operators are given as: 

 

Operator                   Ranking                     Optimal 

choice 

PNHPWA              3 1 5 2 4c c c c c               

4c  

PNHPWG               4 5 1 2 3c c c c c              

3c  

Therefore, one can invest his money either in 4c or 3c to 

gain more in the future. 

 

6. Conclusion  

The present paper is devoted to constructing a MADM 

model based on Pythagorean neutrosophic Hamacher 

aggregate operators to deal with real-world problems. We 

also propose the new scores and accuracy functions to 

compare PNNs. A practical application has been successfully 

executed to show the effectiveness of the proposed model. At 

present, the Pilthogenic set [53] is considered to be the most 

generalized framework to model vagueness. Therefore, in the 

future, the proposed study can be extended in Pilthogenic 
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setting by introducing the Pythagorean Pathogenic Hamacher 

operators and studying its various weightage operators that 

will help to tackle more uncertain knowledge hidden in our 

surroundings. 
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