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Resumen Abstract:
Islam MS, Khan K, Akbar MA, Mastroberardino A., presentan el
método F-expansión combinado con la ecuación de Riccati para re-
solver ecuaciones de evolución no lineal, y lo aplican para encontrar
“nuevas soluciones”, de las ecuaciones mBBM y mKdV. En esta
nota demostramos que estas soluciones se pueden encontrar a partir de
la solución general y que el método expuesto por los citados autores,
no es tan efectivo como ellos afirman.

Islam MS, Khan K, Akbar MA, Mastroberardino A., present the F-
expansion method combined with the Riccati equation to solve non-
linear evolution equations, and apply it to find ‘new solutions of the
mBBM and mKdV equations. In this note, we demonstrate that
these solutions can be found from the general solution and that the
method proposed by the aforementioned authors is not as effective as
they claim
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1. Introducción

Exact solutions of nonlinear partial differential equations play
an important role in physical sciences, as these equations des-
cribe various natural phenomena like vibrations, solitons, wave
propagation, etc. (see [1–4]). Thus these solutions can give us
a better understanding of the physical aspects of the problem.
In recent years, with the development of computer algebraic
systems, various methods have been implemented to find trave-
ling wave solutions, such as the hyperbolic tangent method, the
exponential method, the Riccati equation projective method,
etc. (see [5–8]).
In [9] the authors present an analytical method, called the
improved F-expansion method combined with a Riccati equa-
tion, to find exact solutions of evolution equations. To verify
computational efficiency, the proposed method is applied to
find solutions of the following partial differential equations:
The modified Benjamin-Bona-Mahony equation (mBBM)

ut + ux + au2ux + buxxt = 0, (1)

with a, b positive constants, and the modified Korteweg-de

Vries equation (mKdV)

ut − u2ux + δuxxt = 0, (2)

with δ a non-zero constant. For the above equations, look for
solutions in the form of a solitary wave

u(x, t) = u(ξ), where ξ = x+ λt.

By substituting into (1), integrating the resulting equation with
respect to ξ, and taking the constant of integration equal to
zero, they obtain the ordinary differential equation.

bλu′′ +
a

3
u3 + (λ+ 1)u = 0. (3)

In a similar way they obtain for the equation (2), the equation

δu′′ − 1

3
u3 + λu = 0. (4)

It can be seen that the equations (3) and (4) are of the form

u′′ +Au3 +Bu = 0 (5)

with A and B constant.
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The purpose of this note is to show that the equations (3) and
(4) can be solved using elementary methods, and that the 58
“solutions” presented in [9], they are obtained as particular
cases of the “general solution” found in this note; so that the
solutions found in [9] should not be considered as new and
that the method used by the authors of [9] is not as effective as
they claim in the conclusions.

2. Solution to the equation (5)

Following the suggestion found in basic texts on differential
equations, see [10] substitutions

u′(ξ) = ρ

u′′(ξ) =
dρ

dξ
=

dρ

du

du

dξ
= ρ

dρ

du
(6)

allow to reduce the equation (5) to the first order differential
equation

ρ
dρ

du
= −Au3 −Bu, (7)

from where,

ρ = ±
√
−A

2
u4 −Bu2 + C1, (8)

Taking into account the value of ρ, given in (6) and separating
the variables, we obtain∫

du√
−A

2 u
4 −Bu2 + C1

= ±ξ + C̃2 (9)

C1 y C̃2 arbitrary constants.

As is known the solution of (9) can be expressed via the elliptic
Weierstrass functions, see [11]. However, periodic solutions
and solitary wave solutions can be found, for some particular
values of the constants C1 and C̃2.

1. If C1 = 0, we obtain the following solutions according
to the signs of the constants A and B.

a) If A < 0 and B > 0,

u(ξ) =

√
−2B

A
sec
[
±
√
Bξ + C2

]
, (10)

b) If A < 0 and B < 0,

u(ξ) = 2

√
2B

A

C2 exp[±
√
−Bξ]

C2
2 exp[±2

√
−Bξ]− 1

, (11)

c) If A > 0 and B < 0,

u(ξ) = ±2

√
−2B

A

C2 exp[±
√
−Bξ]

C2
2 exp[±2

√
−Bξ] + 1

, (12)

d) If A < 0 and B = 0,

u(ξ) = ±
√

−2

A

1

ξ + C2
, (13)

2. If C1 = −B2

2A , the following solutions are obtained

a) For A < 0 and B < 0

u(ξ) =

√
B

A
tan

[
±
√

−B

2
ξ + C2

]
, (14)

b) For A < 0 and B > 0

u(ξ) = ±
√

−B

A

1 + C2 exp [±
√
2Bξ]

1− C2 exp [±
√
2Bξ]

, (15)

Note: the other cases that may arise regarding the values that
the constants A and B can assume are not considered here,
since they are not relevant to comment on the solutions of the
equations in [9].

3. The modified Benjamin-Bona - Mahony equation

The application of the method described by the authors of [9],
it involves taking u(ξ) defined by

u(ξ) = α0 + α1(m+ F (ξ)) + β1(m+ F (ξ))−1,

by substituting u(ξ) and its second derivative into (3), we
obtain a polynomial in F (ξ). Setting the coefficients of the
powers of F (ξ) to zero, we obtain a system of seven equations
in the unknowns α0, α1, β1 m1, λ. (see page 4 in [9]), due
to the complexity of the system, it is clear the need to use a
computer algebraic system to find its solutions.
The objective of this section is to comment on the 58 solutions
of the equation (3), reported by the authors of the article
under study and to observe that they are obtained from the
equations given in the previous section for particular values of
the constants of integration.

We first make the following observations:

1. If u(ξ) is a solution of the equation (3), then v(ξ) :=
−u(ξ) is also a solution; therefore, it is only necessary to
“examine.about half of the solutions.

2. A direct observation of the families 1 and 2 of solutions,
taking into account that the value of ξ is the same, it is
obtained that: u5 = u4; u6 = u3; u8 = u1; u7 = u2;
that is, the solutions of family 2 are the same as those of
family 1.

3. The solutions of family 1 are obtained from the solutions
of family 6, taking α0 = 0.

4. In family 3, u9 = u11; u10 = u12; for which it is enough
to take into account that by definition

cothα =
1

tanhα

5. The solutions of the family 5, are obtained from the family
6, with

α0 =
1√
−a

.

6. The solutions of the families 7 and 8 are obtained from
those of the family 12, taking α0 = 0.

7. In the family 9, u35 = u33; u36 = u34;
2
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8. If in the family 12, we take α0 = i√
a

we get the family
11.

9. The solutions of the family 15, are the same of the family
13.

10. The expressions given in the family 14 are not solutions.

11. The solutions of the family 16, are obtained from those of
the family 17, with

α0 =
1

2
√
6b

.

From the above observations, it is clear that it is
only necessary to consider the following ten solutions
u9, u13, u15, u21, u35, u37, u39, u49, u57, u58.

Taking into account that (3), it can be written as

u′′ +
a

3bλ
u3 +

λ+ 1

bλ
u = 0,

which corresponds to the equation (5), with

A =
a

3bλ
; B =

λ+ 1

bλ
(16)

Using the expressions for tanh and coth in terms of the expo-
nential function, the solution u9(ξ) can be written:

u9(ξ) =
−2

√
−6bk√

a(1 + 8bk)
· 1 + exp[−4

√
−kξ]

1− exp[−4
√
−kξ]

,

For this solution λ = − 1
1+8bk , plugging this value of λ into

the expressions for A and B given in the equation (16 ). It is
observed that the equation u9(ξ) is obtained from the equation
(15), with C2 = 1.
Proceeding in the same way, the following can be stated:

u13(ξ) =
−4

√
−6bk√

a(1−4bk)
· exp[2

√
−kξ]

exp[4
√
−kξ]−1

, it is (11) with C2 = 1.

u15(ξ) =
−4

√
−6bk i√

a(1−4bk)
· exp[2

√
−kξ]

exp[4
√
−kξ]+1

, it is (11) with C2 = i.

u21(ξ) = −
√
−6bk√

a(1+2bk)
· 1+C2 exp[−2

√
−kξ]

1−C2 exp[−2
√
−kξ]

, it is (15).

For the solution u35(ξ) given in [9]:

u35(ξ) =
−b

√
6k√

ab(1 + 8bk)

[
(cot2

√
kξ)− 1

]
tan(

√
kξ),

taking into account some basic trigonometric identities

cotα− tanα =
cos2 α− sin2 α

sinα cosα
=

2 cos(2α)

sin(2α)
= 2 cot 2α

Thus u35 can be written

u35(ξ) =
−2b

√
6k√

ab(1 + 8bk)
cot(2

√
−kξ),

in this solution ξ = x− t
1+8bk ; that is λ = 1

1+8bk , by substi-
tuting this value of λ in the expressions for A and B given in

(16), it is observed that u35(ξ) is obtained from the equation
(14) with C2 = π

2 .
Similarly, we have:

u37(ξ) =
−2i

√
6bk√

a(4bk − 1)
csc(2

√
kξ),

is obtained from (10), with C2 =
π

2

u39(ξ) =
2i
√
6bk√

a(4bk − 1)
sec(2

√
kξ),

is obtained from (10), with C2 = 0.

Finally,

u49(ξ) = −
√
6b√
aξ
, is (13), with C2 = 0.

u57(ξ) =
−6α0b√

6ab α0 ξ−6b
, is (13), with C2 =

√
6b

α0
.

u58(ξ) =
6α0b√

6ab α0 ξ+6b
, is (13), with C2 =

√
6b√
aα0

.

4. The modified Korteweg-de Vries (mKDV) equation

In example 4.2 of reference [9], the authors apply the method
they describe to the equation mKDV, given in (2) and to do so
they solve the equation (4) which is of the form (5) with:

A = − 1

3δ
; B =

λ

δ
. (17)

The application of the “improved F-expansion method
combined with the Riccati equation”to solve the equation
mKDV, also leads to the resolution of a system of 7 equations
in the unknowns α0, α1, β1,m, λ system that they solve with
the help of mathematical software. This allows them to find 34
solutions of the equation (4).

The objective of this section is to show that the solutions found
by the authors in [9] are obtained as particular cases of the
solutions found in this article in section 3. Before doing so, we
make the following comments:

1. If u(ξ) is a solution of the equation (4) then v(ξ) = −u(ξ)
is also a solution.

2. The solutions of families 1 and 3 are obtained from those
corresponding to family 2, taking α0 = 0.

3. The value of λ must be λ = −2δk± 6δk, with k < 0, for
the solutions of family 4; with k > 0 for family 8.

4. The solutions of families 5 and 7 are obtained from the
solutions of family 6, with α0 = 0.

5. The solutions of family 11 are the same as those of family
10.

6. As in family 2, α0 is an arbitrary constant, the solutions
u7,8(ξ) are obtained from the expressions of u5,6(ξ).
Similarly, the solutions of u21,22(ξ) corresponding to fa-
mily 6 are obtained from u19,20(ξ).

Considering the above, it is only necessary to look at the solu-
tions, u5, u6, u13, u19, u20, u27, u29, u30, u31.

3
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Starting with some observations of the solution u27(ξ). On
page 10 of the article [9] it appears:

Family 8 : u27(ξ) =
√
6δk csc[

√
kξ] sec[

√
kξ],

where ξ = x + (−2δk ± 6δ)t. Possibly due to a typing
error, the value of λ, as can be seen on page 8, should be
λ = −2δk± 6δk, with which λ can take two values λ1 = 4δk
and λ2 = −8δk. However, a direct calculation shows that
u27(ξ) is not a solution of the equation (4) with λ2 = −8δk.
Thus, the only value of λ must be the one given in λ1 = 4δk,
with k > 0.

Using basic trigonometric identities, we can simplify the ex-
pression for u27(ξ):

u27(ξ) =
√
6δk csc[

√
kξ] sec[

√
kξ] =

√
6δk

sin[
√
kξ] cos[

√
kξ]

=
2
√
6δk

2 sin[
√
kξ] cos[

√
kξ]

=
2
√
6δk

sin[2
√
kξ]

= 2
√
6δk csc[2

√
kξ]

On the other hand, taking into account the values of A and B
given in (4.1)

A =
1

3δ
< 0; B =

λ

δ
= 4k > 0,

It can be seen that u27(ξ) is obtained from equation (2.5) with
C2 = −π/2.

A similar analysis can be done for the solutions of family 4, in
this case λ = 4δk.

u13(ξ) = 4
√
−6kδ

exp[−2
√
−kξ]

1− exp[−4
√
−kξ]

,

is obtained from (2.6) with C2 = −1.

For the remaining solutions we have:

1.

u5(ξ) =
√
−6kδ

1− C exp[2
√
−kξ]

1 + C exp[2
√
−kξ]

,

with C =
α0 −

√
−6kδ

α0 +
√
−6kδ

,

so; u5(ξ) is equation (2.10) with C2 = −C.

In the case α0 = −
√
−6kδ, u5(ξ) = −

√
−6kδ is

obtained from (2.10) with C2 = 0.

2. After simplifying the expression for u20(ξ) we have:

u20(ξ) = −
√
−6kδ

(
tan[

√
kξ] +

√
−6kδ
α0

1−
√
−6kδ
α0

tan[
√
kξ]

)

is obtained from equation (2.9) by taking

C2 = tan−1
[√

6kδ
α0

]
.

If α0 = 0,

u20(ξ) =
√
−6kδ cot[

√
kξ],

in this case u20(ξ) is (2.9) with C2 = π/2.

3.

u29,30(ξ) =
√
6δ

1

ξ ∓
√
6δ

α0

,

is (2.8) with C2 = ∓
√
6δ

α0
,

u31(ξ) = −
√
6δ

ξ

is (2.8) with C2 = 0.

5. Conclusion

It was shown that some “solutions.of the equations mBBM
and mKdV found in [9] are not solutions, despite what the
authors of the article under study stated, according to which:
“All of these solutions have been verified with MAPLE by subs-
tituting them into the original equations.”
In this note it was shown that the solutions found by the authors
of [1] are obtained from the general solution, found in section
2 of this article, for particular values of the constants.
Finally the authors of [9] conclude: “the performance on the
improved F. expansion method confirms that it is a reliable
an effective technique for finding exact solution ...”. However,
what is shown in this note tells us that, at least for the equations
considered by them, the method is not as effective.
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