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Resumen Abstract:
El objetivo de este trabajo es estudiar algunos núcleos definidos pos-
itivos a valores operadores en espacios de Hilbert. Demostramos la
existencia de un núcleo K2 asociado a cualquier par de núcleos equiv-
alentes K1 y K. El par (K1,K2) se llama núcleos biequivalentes.
Además, demostramos que K2 y K son equivalentes y satisfacen una
relación dual similar a las bases de Riesz, las sucesiones biortogonales
y los marcos duales en los espacios de Hilbert. Como una consecuen-
cia, obtenemos nuevos resultados para los procesos estocásticos.

The aim of this paper is to study some positive definite kernels for
operator values in Hilbert spaces. We prove the existence of a kernel
K2 associated with any pair of equivalent kernels K1 and K. The
pair (K1,K2) is called biequivalent kernels. Moreover, we show that
K2 and K are equivalent and satisfy a dual relation similar to Riesz
bases, biorthogonal sequences, and dual frames in Hilbert spaces. As
a consequence, we obtain new results for stochastic processes.

Palabras clave: Nucleos definidos positivos; Sistemas bior-
togonales; Descomposición de Kolgomorov; Kernels biequiva-
lentes; Relación dual.

Keywords: Positive definite kernels; biorthogonal systems;
Kolgomorov decomposition; biequivalent kernels; dual relation.

1 Introduction

In this paper, we study positive definite kernels for operator
values in Hilbert spaces. The positive definite kernels play
an increasingly prominent role in many applications such as
scattered data fitting, numerical solution of PDEs, probability
theory and statistics, and stochastic analysis. Extensions for
kernels are given to the operator values of the results obtained
in [2] for the scalar case. We obtain results are similar with
some known results about biorthogonal bases, dual frames, and
wavelets. These results are motivated by the importance and ap-
plications of dual bases, frames dual, and wavelets and their great
relevance in pure and applied mathematics, see [6, 7, 8, 11, 10].

Let (X, ∥ · ∥) be a Banach space. Let I be nonempty.
A familiy {(xi, x∗i )}i∈I of pairs in X × X∗ is called a
biorthogonal system in X ×X∗ if

⟨xi, x∗i ⟩ = δi,j

where δi,j is the Kronecker δ, for all i, j ∈ I .
Let T be a positive linear operator on the Hilbert space H such

that for every x ∈ H

A ⟨x, x⟩ ≤ ⟨Tx, x⟩ ≤ B ⟨x, x⟩ (1.1)

for some 0 < A ≤ B. Then T is invertible on H and for every
x ∈ H it follows that

1

B
⟨x, x⟩ ≤

〈
T−1x, x

〉
≤ 1

A
⟨x, x⟩ .

We now recall the definition of a Riesz basis (see [11] ). Let H
be a separable Hilbert space. A family {xn}n∈N in H is called a
Riesz basis if it is the image of an orthonormal basis {en}n∈N
under an bounded invertible operator T : H → H, that is, if

Ten = xn for (n = 1, 2, 3, ...) .

There are numerous alternative but equivalent definitions of a
Riesz basis (see [11], Theorem 9 on page 32).
Let H be a Hilbert space. Then the sequence {xn}n∈N is a Riesz
basis for H if and only if the sequence {xn}n∈N is complete
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in H and there exist positive constants A,B, such that for any
sequence of scalars a = {an}n∈N with finite support one has

A
∑
n∈N

|an|2 ≤

∥∥∥∥∥∑
n∈N

anxn

∥∥∥∥∥
2

≤ B
∑
n∈N

|an|2.

Proposition 1. Let {xn}n∈N be a Riesz basis for a Hilbert space
H and let {yn}n∈N be biorthogonal to {xn}n∈N. Then for every
x ∈ H there exist positive constants A,B such that

A
∑
n∈N

|⟨x, yn⟩|2 ≤ ∥x∥2 ≤ B
∑
n∈N

|⟨x, yn⟩|2 .

The following dual relation holds
1

B

∑
n∈N

|⟨x, xn⟩|2 ≤ ∥x∥2 ≤ 1

A

∑
n∈N

|⟨x, xn⟩|2 .

Definition 2. We call Λ = {Λi ∈ B (H,Hi) : i ∈ I} a g-frame
for H with respect to {Hi}i∈I , or simply, a g- frame for H, if
there exist two positive constants A,B such that

A ∥f∥2 ≤
∑
i∈I

∥Λif∥2 ≤ B ∥f∥2 , f ∈ H.

The positive numbers A and B are called the lower and upper g-
frame bounds, respectively. We call Λ a tight g-frame if A = B
and we call it a Parseval g-frame if A = B = 1. If only the
second inequality holds, we call it a g-Bessel sequence. If Λ is a
g-frame, then the g-frame operator SΛ is defined by

SΛf =
∑
i∈I

Λ∗
iΛif, f ∈ H

which is a bounded, positive and invertible operator such that

AI ≤ SΛ ≤ BI

and for each f ∈ H, we have

1

B
∥f∥2 ≤

∑
i∈I

∥∥ΛiS
−1
Λ f

∥∥2 ≤ 1

A
∥f∥2 .

The canonical dual g-frame for Λ is defined by
{
ΛiS

−1
Λ

}
i∈I

with bounds 1
B ,

1
A .

Our paper is organized as follows. After an introduction, Section
2 presents some basic definitions concerning positive operators,
Riesz bases, biorthogonal systems, g-frames in Hilbert spaces
and Kolmogorov decompositions that are used throughout this
paper, see for instance [4, 11, 9, 3]. Sections 3 present some re-
sults about positive definite kernels for operator values in Hilbert
spaces, see [1]. We show that two kernels K2 and K are equiva-
lent and satisfy a dual relation similar to Riesz bases, biorthogo-
nal sequences, and dual frames in Hilbert spaces. Finally, section
4, we obtain new results for stochastic processes.

2 Preliminaries

In this section, we describe some properties of bases in Banach
spaces, Hilbert spaces and linear operators, and Kolmogorov
Decomposition Theorem. For more details, see instance [4, 11,
3].

Definition 3. Let (X, ∥ · ∥) be a Banach space. Let I be a
nonempty. A familiy {(xi, x∗i )}i∈I of pairs in X ×X∗ is called
a biorthogonal system in X ×X∗ if

⟨xi, x∗i ⟩ = δi,j

where δi,j is the Kronecker δ, for all i, j ∈ I . From now on, we
deal only with the case that the index set I is countable.

Given a basis {xn}n∈I , we define the coordinate functionals
x∗n : X → R by x∗n(x) = an, where x =

∑∞
n=1 anxn . It is

easily seen that each x∗n is linear and satisfies x∗n(xm) = δm,n

for all n,m ∈ I . .

Definition 4. Let (X, ∥ · ∥) be a Banach space over C and
{(xi, x∗i )}i∈I be a biorthogonal system. Then

(i) The system {xi}i∈I is total if ⟨x, x∗i ⟩ = 0 for all i ∈ I
implies x = 0.

(ii) The system {xi}i∈I is fundamental if the finite linear com-
binations of {xi}i∈I are dense in X . i.e. if ⟨xi, x∗⟩ = 0 for
all i ∈ I implies x∗ = 0,

(iii) The system {xi}i∈I is bounded if there exists a constant
c ≥ 1 such that ∥xi∥ ∥x∗i ∥ ≤ c for all i ∈ I .

(iv) A biorthogonal system {(xi, x∗i )}i∈I is said to be complete
if it is fundamental and total.

2.1 Positive Operators, Riesz Bases, Biorthogonal Systems in
Hilbert Spaces and g-frames

Next, we summarize some well-known results about positive
operators, Riesz bases, biorthogonal systems, and g-frames (see
[4], [11] and [9]) .

Definition 5. A bounded operator T acting on a Hilbert space H
is said to be positive if T = T ∗ and ⟨Tx, x⟩ ≥ 0 for all x ∈ H.

Proposition 6. [4, Theorem 4.6.11] Let T be a positive linear
operator on the Hilbert space H such that for every x ∈ H

A ⟨x, x⟩ ≤ ⟨Tx, x⟩ ≤ B ⟨x, x⟩ , (2.1)

for some 0 < A ≤ B. Then T is invertible on H and for every
x ∈ H it follows that

1

B
⟨x, x⟩ ≤

〈
T−1x, x

〉
≤ 1

A
⟨x, x⟩ . (2.2)
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In a separable Hilbert space, the most important bases are or-
thonormal. Second in importance are those bases that are equiva-
lent to some ortho-normal bases. They will be called Riesz bases,
and they constitute the largest and most tractable class of bases
known. Some definitions and results can be found, for example,
in [11].

Definition 7. Let H be a separable Hilbert space. A family
{xn}n∈N in H is called a Riesz basis if it is the image of an
orthonormal basis {en}n∈N under an bounded invertible operator
T : H → H, that is, if

Ten = xn for (n = 1, 2, 3, ...) .

Proposition 8. Let H be a Hilbert space. Then the sequence
{xn}n∈N is a Riesz basis for H if and only if the sequence
{xn}n∈N is complete in H and there exist positive constants
A,B, such that for any sequence of scalars a = {an}n∈N with
finite support one has

A
∑
n∈N

|an|2 ≤

∥∥∥∥∥∑
n∈N

anxn

∥∥∥∥∥
2

≤ B
∑
n∈N

|an|2.

For the proof of this see [11, Theorem 9 on page 32 ].

Proposition 9. Let {xn}n∈N be a Riesz basis for a Hilbert space
H and let {yn}n∈N be biorthogonal to {xn}n∈N. Then for every
x ∈ H there exist positive constants A,B such that

A
∑
n∈N

|⟨x, yn⟩|2 ≤ ∥x∥2 ≤ B
∑
n∈N

|⟨x, yn⟩|2 .

The following dual relation holds
1

B

∑
n∈N

|⟨x, xn⟩|2 ≤ ∥x∥2 ≤ 1

A

∑
n∈N

|⟨x, xn⟩|2 .

We have the following generalization of the previous result, see
for example [9].

Definition 10. We call Λ = {Λi ∈ B (H,Hi) : i ∈ I} a g-frame
for H with respect to {Hi}i∈I , or simply, a g-frame for H, if
there exist two positive constants A,B such that

A ∥f∥2 ≤
∑
i∈I

∥Λif∥2 ≤ B ∥f∥2 , f ∈ H.

The positive numbers A and B are called the lower and upper g-
frame bounds, respectively. We call Λ a tight g-frame if A = B
and we call it a Parseval g-frame if A = B = 1. If only the
second inequality holds, we call it a g-Bessel sequence. If Λ is a
g-frame, then the g-frame operator SΛ is defined by

SΛf =
∑
i∈I

Λ∗
iΛif, f ∈ H

which is a bounded, positive and invertible operator such that

AI ≤ SΛ ≤ BI

and for each f ∈ H, we have

1

B
∥f∥2 ≤

∑
i∈I

∥∥ΛiS
−1
Λ f

∥∥2 ≤ 1

A
∥f∥2 .

The canonical dual g-frame for Λ is defined by
{
ΛiS

−1
Λ

}
i∈I

with bounds 1
B ,

1
A .

2.2 Kolmogorov Decomposition Theorem
Let {Hn}n∈Z be a family of closed subspaces of a Hilbert space
H. Then, the closure of the linear span of these spaces is denoted
by
∨

n∈Z Hn. If the subspaces Hn are pairwise orthogonal, i.e.
Hi⊥Hj for i ̸= j, then the notation ⊕n∈ZHn is used instead
of
∨

n∈Z Hn. This space ⊕n∈ZHn will be called the orthogonal
sum of the pairwise orthogonal subspaces Hn.
Let {Hn}n∈Z be a family of Hilbert spaces. An operator- val-
ued kernel on Z to {Hn}n∈Z is an application K : Z × Z →⋃

m,n∈Z L(Hm,Hn) such that K(n,m) ∈ L(Hm,Hn) for
n,m ∈ Z.
In this section and the following one, unless it is otherwise stated,
the kernels will be operator- valued ones.
A kernel K on Z with {Hn}n∈Z is a positive definite kernel if∑

n,m∈Z
⟨K(n,m)hm, hn⟩Hn ≥ 0,

for all sequences {hn} in ⊕n∈ZHn with finite support(ie. hn =
0 except for finite number of integers n).
Let K be a positive definite kernel. Let F be the linear space of
elements

⊕
n∈Z Hn and Fo the space of elements F with finite

support.
Define BK : Fo ×Fo → C with

BK(f, g) =
∑

m,n∈Z
⟨K(n,m)fm, gn⟩Hn

, (2.3)

for f, g ∈ Fo, f = {fn}, g = {gn}, fn, gn ∈ Hn.
Note that BK , satisfies all properties of an inner product, except
for the fact that the set

NK = {h ∈ Fo : BK(h, h) = 0}

could be nontrivial.
According to the Cauchy-Schwarz inequality

NK = {h ∈ Fo : BK(h, g) = 0, for all g ∈ Fo},

hence NK is a linear subspace of Fo.
The quotient space Fo/NK is also a linear subspace. If [h] stands
for the class in Fo/NK of the element h then the application

⟨[h], [g]⟩ = BK(h, g), h, g ∈ Fo
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is well defined. To prove that ⟨·, ·⟩ is an inner product on Fo/NK

is straightforward.
The complection of Fo/NK with respect to the norm induced by
this inner product is a Hilbert space. It is known as the Hilbert
space associated with the positive definite kernel K and it is
denoted by HK . The inner product and the norm of HK will be
represented as ⟨·, ·⟩HK

and ∥ · ∥HK
respectively. This norm will

be named as the norm induced by K.
The following theorem is a version of the classical result of
Kolmogorov (See [5] for a historical review).

Theorem 11 (Kolmogorov). Let {Hn}n∈Z be a family of Hilbert
spaces and let K : Z× Z →

⋃
m,n∈Z L(Hm,Hn) is a positive

definite kernel . Then there exists an application V defined on Z
such that V (n) ∈ L(Hn,HK) for each n ∈ Z and

(a) K(n,m) = V ∗(n)V (m) if n,m ∈ Z.

(b) HK =
∨
n∈Z

V (n)Hn.

(c) The decomposition is unique in the following sense: if H′ is
another Hilbert space and V ′ defined on Z is an application
such that V ′(n) ∈ L(Hn,HK) for each n ∈ Z that satisfy
(a) and (b),then there exists a unitary operator Φ : HK →
H′ such that ΦV (n) = V ′(n) for all n ∈ Z.

A proof of this theorem can be found in [3, Teorema 3.1].
An application V that satisfies the property (a) in the former
theorem is called The Kolmogorov Decomposition of the Kernel
K or simply, a Decomposition of the kernel K (see [3]). The
property (b) is known as the minimality condition of Kolmogorov
Decomposition. The meaning of property (c) is that, given the
minimality condition (b), the Kolmogorov Decomposition is
essentially unique.

3 Equivalent Positive Definite Kernels To Operator Val-
ues, biequivalent kernels, and dual relation

In this section, we present some of the results given in [1]. In
what follows, we will assume that H is a separable Hilbert space.
Inspired by the theory of Riesz bases (see, [11]), we define
and study a new class of positive definite kernels. Also deduce
some results for positive definite kernels by using the equivalent
kernels and Kolmogorov decompositions.

Definition 12. Let K1,K2 : Z × Z → L(H) be two positive
definite kernels.
We say thatK1 andK2 are equivalent if there exist two constants
A,B with 0 < A ≤ B such that

A∥[h]K1
∥2HK1

≤ ∥[h]K2
∥2HK2

≤ B∥[h]K1
∥2HK1

,

for h ∈ Fo.

Remark 13. Let K : Z×Z → L(H) is a positive definite kernel.
Let h ∈ Fo and {hn}n∈Z a sequence in H with finite support.

From the definition of the norm induced by the kernel K and the
Kolmogorov decomposition theorem, we have

∥[h]∥2HK
= ⟨[h], [h]⟩HK

=
∑

n,m∈Z
⟨K(n,m)hm, hn⟩H

=
∑

m,n∈Z
⟨V ∗

K(n)VK(m)hm, hn⟩H

=

∥∥∥∥∥∑
n∈Z

VK(n)hn

∥∥∥∥∥
2

H

.

Theorem 14. Let K1,K2 : Z × Z → L(H) are two positive
definite kernels. Then the following conditions are equivalent:

(i) Kernels K1 and K2 are equivalent.

(ii) There exists a bijective bounded linear map with bounded
inverse,

Φ : HK1
→ HK2

such that

ΦVK1
(n) = VK2

(n) for all n ∈ Z.

(iii) There exist are two constants A,B with 0 < A ≤ B such
that

A
∑

n,m∈Z
⟨K1(n,m)hm, hn⟩H ≤

∑
n,m∈Z

⟨K2(n,m)hm, hn⟩H

≤ B
∑

n,m∈Z
⟨K1(n,m)hm, hn⟩H

for every sequence with finite support {hn}n∈Z ⊂ H.

For the proof of this see [1].

3.1 Equivalent kernels: main results
Extensions for kernels are given to the operator values of the
results obtained in [2] for the scalar case. These results are
motivated by the importance and applications of dual bases, dual
frames, and wavelets and their great relevance in pure and applied
mathematics, see [11, 6, 7, 10, 8, 9]. We show that two kernels
K2 and K are equivalent and satisfy a dual relation similar to
Riesz bases and biorthogonal sequences.

Proposition 15. Let K1 : Z × Z → L(H) and K : Z × Z →
L(H) are two positive definite kernels such that K1 and K are
equivalent. Then there exists a unique positive definite kernel
K2 : Z × Z → L(H) with VK2

(n) ∈ HK1
for all n ∈ Z such

that

V ∗
K1

(n)VK2
(m) = K(n,m) for every m,n ∈ Z. (3.1)

Furthermore, the kernel K2 is equivalent to K1. In this case,
it is said to be that (K1,K2) is a pair of biequivalent positive
definite kernels with kernel K.
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Proof. Since K1 and K are equivalent, by Theorem 14, there
exists a bounded invertible operator Φ : HK1

→ HK such that

ΦVK1(n) = VK(n) for all n ∈ Z.

Let K2 : Z× Z → L(H) the kernel given by

K2(n,m) = (Φ∗ΦVK1
(n))∗Φ∗ΦVK1

(m)

for every m,n ∈ Z.
It is easily seen that K2 is a positive definite kernel. For any
sequence with finite support {hn}n∈Z in H, it follows that

∑
n,m∈Z

⟨K2(n,m)hm, hn⟩H = ...

... =
∑

n,m∈Z
⟨(Φ∗ΦVK1(n))

∗Φ∗ΦVK1(m)hm, hn⟩H

=
∑

n,m∈Z
⟨Φ∗ΦVK1

(m)hm,Φ
∗ΦVK1

(n)hn⟩HK1

=

〈∑
m∈Z

Φ∗ΦVK1
(m)hm,

∑
n∈Z

Φ∗ΦVK1
(n)hn

〉
HK1

=

∥∥∥∥∥∑
m∈Z

Φ∗ΦVK1
(m)hm

∥∥∥∥∥
2

HK1

≥ 0.

Then VK2(n) ∈ HK1 for all n ∈ Z and

V ∗
K1

(n)VK2
(m) = V ∗

K1
(n)Φ∗ΦVK1

(m)(ΦVK1
(n))∗ΦVK1

(m)

= V ∗
K(n)VK(m) = K(n,m).

for every m,n ∈ Z.

Suppose now that K3 is a positive definite kernel such that
VK3(m) ∈ HK1 which also satisfies 3.1. Then for any fixed
m

V ∗
K1

(n)VK2
(m) = V ∗

K1
(n)VK3

(m) for all n ∈ Z,

so we must have VK2(m) − VK3(m) = 0. This shows that
K2 is unique. Finally, since Φ is bounded and invertible,
the adjoint operator Φ∗ is also bounded and invertible and
Φ∗VK(m) = VK2

(m) for each m ∈ Z, then K2 and K are
equivalent. Now, being the kernels K and K1 equivalent, we
have by the transitivity property of the equivalence of kernels
that K2 is equivalent to K1.

In analogy with Proposition 9 (see also [4, 6, 8, 9]) we have the
following.

Proposition 16 (dual relation). Let K1 : Z × Z → L(H) and
K : Z× Z → L(H) have two definite positive kernels such that
K1 and K are equivalent, and let K2 : Z × Z → L(H) with
VK2

(n) ∈ HK1
for all n ∈ Z which satisfy the following relation

V ∗
K1

(n)VK2
(m) = K(n,m) for every m,n ∈ Z.

Then, there exist positive constants A ≤ B such that

A
∑

n,m∈Z
⟨K(n,m)hm, hn⟩H ≤

∑
n,m∈Z

⟨K1(n,m)hm, hn⟩H

≤ B
∑

n,m∈Z
⟨K(n,m)hm, hn⟩H

Furthermore, one has the dual relation

1

B

∑
n,m∈Z

⟨K(n,m)hm, hn⟩H ≤
∑

n,m∈Z
⟨K2(n,m)hm, hn⟩H

≤ 1

A

∑
n,m∈Z

⟨K(n,m)hm, hn⟩H

for every sequence with finite support {hn}n∈Z ⊂ H.

Proof. The assumption that K1 and K are equivalent implies
there exist positive constants A ≤ B such that

A
∑

n,m∈Z
⟨K(n,m)hm, hn⟩H ≤

∑
n,m∈Z

⟨K1(n,m)hm, hn⟩H

≤ B
∑

n,m∈Z
⟨K(n,m)hm, hn⟩H .

Now show that one has the dual relation. Since K1 and K are
equivalent, by Theorem 14, there exists a bounded invertible
operator Φ : HK1 → HK such that

ΦVK1
(n) = VK(n) for all n ∈ Z.

As Φ is bounded and invertible, the adjoint operator Φ∗ is also
bounded and invertible.
Assertion

Φ∗ΦVK1
(n) = VK2

(n) for all n ∈ Z.

Indeed, we have

V ∗
K1

(n)VK2
(m) = V ∗

K1
(n)Φ∗ΦVK1

(m) = (ΦVK1
(n))∗ΦVK1

(m)

= V ∗
K(n)VK(m) = K(n,m).

for every m,n ∈ Z.

Let f ∈ HK given by

f =
∑
n∈Z

VK(n)hn, where {hn}n∈Z ⊂ H with finite sup-

port.
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Then

〈
(ΦΦ∗)

−1
f, f

〉
HK

=
〈(

Φ−1
)∗

Φ−1f, f
〉
HK

=
〈
Φ−1f,Φ−1f

〉
HK1

=
∥∥Φ−1f

∥∥2
HK1

=

∥∥∥∥∥Φ−1

(∑
n∈Z

VK(n)hn

)∥∥∥∥∥
2

HK1

=

∥∥∥∥∥∑
n∈Z

VK1(n)hn

∥∥∥∥∥
2

HK1

=
∑

n,m∈Z
⟨K1(n,m)hm, hn⟩H .

Considering this and the inequality (2.1), of Proposition 6 we
have that

A ∥f∥2HK
≤
〈
(ΦΦ∗)

−1
f, f

〉
HK

≤ B ∥f∥2HK
.

Since f ∈ HK is arbitrary, one gets that the linear operator
(ΦΦ∗)

−1 is positive, then by Proposition 6, we have

1

B
∥f∥2HK

≤ ⟨ΦΦ∗f, f⟩HK
≤ 1

A
∥f∥2HK

.

Given that,

⟨ΦΦ∗f, f⟩HK
= ⟨Φ∗f,Φ∗f⟩HK2

= ∥Φ∗f∥2HK2

=

∥∥∥∥∥∑
n∈Z

VK2(n)hn

∥∥∥∥∥
2

HK2

=
∑

n,m∈Z
⟨K2(n,m)hm, hn⟩H ,

concludes the proof.

4 Multivariate Stochastic Processes, and equivalent
Multivariate Stochastic Processes

In this section it will be used for the decomposition of the covari-
ance Kernels between the stochastic processes (see, [3], section
1, Chapter 6). We obtain new results for stochastic processes.

4.1 Multivariate Stochastic Processes

Definition 17. A pair [K, X], where K is a Hilbert space and
X = {Xn}n∈Z is a family of operators in L(Hn,K), is called
a geometric model of the multivariate process with covariance
kernel K, if

K(m,n) = X∗
mXn.

The Kolmogorov Decomposition Theorem shows that given a
positive definite kernel K, there exists a geometric model of
the multivariate process with covariance kernel K. If [K, X] is
the geometric model of the multivariate process with covariance
kernel K then HX will be the subspace of K generated by this
model, that is,

HX =
∨
n∈Z

XnHn. (4.1)

If [K′, X ′] is another geometric model of the same process,
then the Kolmogorov Decomposition Theorem guarantees the
existence of a unitary operator Φ : HX → HX′ such that
ΦXn = X ′

n for all n ∈ Z. This means that the geometry of
the process is essentially determined by the choice of a geomet-
ric model such that

K =
∨
n∈Z

XnHn. (4.2)

4.2 Equivalent Multivariate Stochastic Processes

From here on, Hn = H for all n ∈ Z and the covariance kernel
of the processes will be positive definite.

Theorem 18 (Isomorphism). Let [W, X] is a geometric model
of the multivariate process and K : Z × Z → L(H) be the
covariance kernel of the processes, then there exists a unitary
operator Φ : HK → HX such that

ΦVK(n) = Xn for every n ∈ Z.

Proof. Let [W, X], X = {Xn}n∈Z is a geometric model of a
multivariate process and K : Z × Z → L(H) is the kernel of
covariance associated with the process.
It follows that the covariance kernel and the space generated by
the process are given by

K(n,m) = X∗
nXm and HX =

∨
n∈Z

XnH.

On the other hand, since K is a positive definite kernel, one more
time by the Kolmogorov decomposition theorem, there exists a
Hilbert space HK and an application VK(n) ∈ L(H,HK) for
all n ∈ Z such that

K(n,m) = V ∗
K(n)VK(m) and HK =

∨
n∈Z

VK(n)H.

Let us define the application Φ : HK → HX in the following
way

Φ

(∑
n∈Z

VK(n)hn

)
=
∑
n∈Z

Xnhn,

where {hn}n∈Z is a sequence with finite support in H.
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Then we have∥∥∥∥∥Φ
(∑

n∈Z
VK(n)hn

)∥∥∥∥∥
2

HX

=

∥∥∥∥∥∑
n∈Z

Xnhn

∥∥∥∥∥
2

HX

=
∑

m,n∈Z
⟨Xmhm, Xnhn⟩HX

=
∑

m,n∈Z
⟨K(n,m)hm, hn⟩H

=
∑

m,n∈Z
⟨V ∗

K(n)VK(m)hm, hn⟩H

=
∑

m,n∈Z
⟨VK(m)hm, VK(n)hn⟩K

=

∥∥∥∥∥∑
n∈Z

VK(n)hn

∥∥∥∥∥
2

HK

.

All of this show us that the application Φ can be extended by
continuity to an unit operator from HK over HX and moreover
ΦVK(n) = Xn for all n ∈ Z.

Definition 19. Two geometric models of multivariate processes
[K, X] and [L, Y ] are said to be equivalent , if dim (HX) =
dim (HY ) and there are two constants A,B with 0 < A ≤ B
such that

A

∥∥∥∥∥∑
n∈Z

Xnhn

∥∥∥∥∥
2

HX

≤

∥∥∥∥∥∑
n∈Z

Ynhn

∥∥∥∥∥
2

HY

≤ B

∥∥∥∥∥∑
n∈Z

Xnhn

∥∥∥∥∥
2

HX

,

where {hn}n∈Z is a sequence in H with finite support.

From the Isomorphism Theorem 18 and the definitions, we have
the following.

Proposition 20. Let [W, X] and [W1, Y ] be two geometric mod-
els of multivariate stochastic processes and K1,K2 the covari-
ance kernels associated with the processes respectively. Then K1

and K2 are equivalent kernels if and only if X = {Xn}n∈Z and
Y = {Yn}n∈Z are equivalent processes.

Theorem 21. Let [K, X] y [L, Y ] two geometric models of mul-
tivariate processes. The following conditions are equivalent:

(i) The models of the multivariate processes [K, X] and [L, Y ]
are equivalent.

(ii) There is a bijective bounded linear application with
bounded inverse

ψ : HX → HY

such that
ψXn = Yn for all n ∈ Z.

(iii) There exist two constants A,B with 0 < A ≤ B such that

A
∑

n,m∈Z
⟨X∗

nXmhm, hn⟩H ≤
∑

n,m∈Z
⟨Y ∗

n Ymhm, hn⟩H

≤ B
∑

n,m∈Z
⟨X∗

nXmhm, hn⟩H ,

for each sequence with finite support {hn}n∈Z ⊂ H.

A proof of this theorem can be found in [1].

Proposition 22. Let [K, X] and [L, Y ] two geometric models
of multivariate processes such that [K, X] and [L, Y ] are equiv-
alents, and let [M, Z] be a geometric model of a multivariate
process such that Z = {Zn}n∈Z with Zn ∈ HX for all n ∈ Z
which satisfy the following relation

X∗
nZm = Y ∗

n Ym for all m,n ∈ Z.

Then, there exist positive constants A ≤ B such that

A

∥∥∥∥∥∑
n∈Z

Ynhn

∥∥∥∥∥
2

HY

≤

∥∥∥∥∥∑
n∈Z

Xnhn

∥∥∥∥∥
2

HX

≤ B

∥∥∥∥∥∑
n∈Z

Ynhn

∥∥∥∥∥
2

HY

(4.3)

Furthermore, one has the following dual relation

1

B

∥∥∥∥∥∑
n∈Z

Ynhn

∥∥∥∥∥
2

HY

≤

∥∥∥∥∥∑
n∈Z

Znhn

∥∥∥∥∥
2

HX

≤ 1

A

∥∥∥∥∥∑
n∈Z

Ynhn

∥∥∥∥∥
2

HY

(4.4)

for each sequence with finite support {hn}n∈Z ⊂ H.

Proof. Let [K, X] and [L, Y ] the geometric models of multivari-
ate processes and K1 and K are the covariance kernel associated
with the stochastic processes, respectively. Since [K, X] and
[L, Y ] are equivalent , we have that the kernels K1 and K are
equivalent. Then there exists a unique positive definite kernel
K2 : Z × Z → L(H) with VK2(n) ∈ HK1 for all n ∈ Z such
that

V ∗
K1

(n)VK2(m) = K(n,m) for every m,n ∈ Z.

Now, by Proposition 16, there exist positive constants A ≤ B
such that

A
∑

n,m∈Z
⟨K(n,m)hm, hn⟩H ≤

∑
n,m∈Z

⟨K1(n,m)hm, hn⟩H

≤ B
∑

n,m∈Z
⟨K(n,m)hm, hn⟩H

Furthermore, one has the dual relation

1

B

∑
n,m∈Z

⟨K(n,m)hm, hn⟩H ≤
∑

n,m∈Z
⟨K2(n,m)hm, hn⟩H

≤ 1

A

∑
n,m∈Z

⟨K(n,m)hm, hn⟩H

for every sequence with finite support {hn}n∈Z ⊂ H. Therefore,
if

K2(n,m) = Z∗
nZm for all m,n ∈ Z.
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Then the statement holds since∥∥∥∥∥∑
n∈Z

Ynhn

∥∥∥∥∥
2

HY

=
∑

m,n∈Z
⟨K(n,m)hm, hn⟩H ,

∥∥∥∥∥∑
n∈Z

Xnhn

∥∥∥∥∥
2

HX

=
∑

m,n∈Z
⟨K1(n,m)hm, hn⟩H

and ∥∥∥∥∥∑
n∈Z

Znhn

∥∥∥∥∥
2

HX

=
∑

m,n∈Z
⟨K2(n,m)hm, hn⟩H .

5 Conclusions

In this paper, the existence of a positive definite kernel is guar-
anteed for every pair of equivalent positive definite kernels. We
have used Kolmogorov decomposition theorem and equivalent
kernels. Furthemore, we show a dual relation in the context of
positive definite kernels of results concerning Riesz bases and
dual frames in Hilbert spaces as well as in Krein spaces, see
[11, 4, 6, 8]. Also we obtain new results for stochastic processes.
In future work we could think give new results and establishing
connections with the theory of frames , Riesz bases and non-
trivial examples of this research in generalized Hilbert spaces.
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