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Resumen 

En este artículo se introduce y estudia el concepto de gráfico 

neutrosófico cuadriparticionado de un solo valor (SVQN-grafo) 

extendiendo la idea de la teoría del gráfico neutrosófico de un solo 

valor (SVN-grafo). Además, se define la noción de grado, orden y 

tamaño de los SVQN-grafos. Además, proporcionamos algunos 

ejemplos ilustrativos para justificar los resultados. 

 

Palabras clave: SVNS; SVN-grafo; SVQN-grafo; SVQN-

conjunto. 

 

Abstract 

In this article an attempt is made to introduce and study the concept 

of single-valued quadripartitioned neutrosophic graph (SVQN-

graph) by extending the idea of single-valued neutrosophic graph 

(SVN-graph) theory. Besides, we introduce the notion of degree, 

order and size of SVQN-graphs. Further, we furnish few 

illustrative examples to justify the results. 

 

 

Keywords: SVNS; SVN-graph; SVQN-graph; SVQN-set. 

 

1. Introduction 

 

Graph theory is generally used as a tool to deal with the 

combinatorial problems in number theory, geometry, topology, 

algebra, etc. In the year 1986, Biggs et al. [7] presented the concept 

of graph theory. Bollobas [8] introduced the idea of modern graph 

theory. Later on, Gonzalez et al. [15] metric locating dominating 

sets of graphs. To deal with the situation having uncertainty, Sunitha 

and Mathew [23] presented a survey of fuzzy graph in 2013. 

Recently, Pal et al. [21] further studied F-graph theory. Shannon and 

Atanassov [24] developed intuitionistic F-graph based on 

intuitionistic FS (in short IFS). Afterwards, Dhavudh and Srinivasan 

[13] introduced the idea of intuitionistic fuzzy graph of second type. 

Intuitionistic F-graph have been further studied by Nagoor Gani and 

Shajitha Begum [20], Sahoo and Pal [25]. Later on, Akram and 

Akmal [1] studied the intuitionistic fuzzy graph structure in the year 

2017. The notion of intuitionistic fuzzy graph from the point of view 

of , , and (;)-levels was introduced by Shannon and Atanassov 

[26]. Afterwards, Parvathi and Karunambigai [22] further studied 

intuitionistic fuzzy graphs. To deal with inconsistency and 

indeterminacy Prof. F. Smarandache developed the notion of 

neutrosophic set (NS) in the year 1998. Broumi et al. [9] introduced 

the idea of single valued neutrosophic graph and studied their 

degree, order, and size. Later on Akram and Sitara [2], Akram [3] 

further studied the structure of single valued neutrosophic graphs. 

Afterwards, Akram [4] introduced the notion of single valued 

neutrosophic planar graphs. In the year 2017, Akram and Shahzadi 

[5] presented the idea of neutrosophic soft graph and give a real life 

application of neutrosophic soft graph. Akram et al. [6] grounded 

the concept of neutrosophic soft rough graph and proposed a 

MADM strategy. Thereafter, Sayed et al. [27] introduced the notion 

of rough neutrosophic digraphs with a real life application. The 

concept of neutrosophic vague graph was introduced and studied by 

Hussain et al. [16]. In the year 2020, Hussain et al. [17] presented 

the notion of neutrosophic vague line graph. The idea of 

homomorphism and isomorphism in strong neutrosophic graphs 

was grounded by Mullai et al. [19] in the year 2020. The notion of 

interval-valued neutrosophic graph was introduced and studied by 

Singh [28]. In the year 2020, Mukherjee and Das [18] introduced 

the neutrosophic bipolar vague soft set and proposed an application 

of it. In the year 2016, Chatterjee et al. [11] grounded the notion of 

quadripartitioned neutrosophic set and proposed a multi criteria 

decision making strategy based on the similarity measure. Later on, 

Das et al. [14] applied the concept of topology on quadripartitioned 

neutrosophic sets and introduced the notion of quadripartitioned 

neutrosophic topological space. 
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The rest of this article has been organized into four sections: 

Section-2 is on preliminaries and definitions those are relevant for 

developing the main results of this article. In section-3, the notion 

of degree, order and size of SVQN-graphs have been procured and 

some properties of those have been investigated. In section-4, we 

conclude the paper, and state some future scope of research in this 

direction. 

2. Some Relevant Results 

 

Definition 2.1.[11] Suppose that Ġ be a fixed set. Then, a single 

valued quadripartitioned neutrosophic set (SVQN-set) H over Ġ is 

defined by: 

H = {(, ŢH(), ÇH(), ŲH(), ŅH()) : Ġ}. 

Here, ŢH, ÇH, ŲH, ŅH are the truth, contradiction, unknown and 

falsity membership functions respectively from Ġ to [0, 1]. So, 0  

ŢH() + ÇH() + ŲH() + ŅH()  4, for each Ġ. 

Definition 2.2.[11] Suppose that A={(, ŢA(), ÇA(), ŲA(), 

ŅA()) : Ġ} and B={(, ŢB(), ÇB(), ŲB(), ŅB()) : Ġ} 

be two SVQN-sets over Ġ. Then, A is said to be a subset of B (i.e., 

AB) if and only if ŢA()  ŢB(), ÇA()  ÇB(), ŲA()  ŲB(), 

Ņa()  ŅB(), for each   Ġ.                                                                                                                                                     

Definition 2.3.[11] Suppose that A={(, ŢA(), ÇA(), ŲA(), 

ŅA()) : Ġ} and B={(, ŢB(), ÇB(), ŲB(), ŅB()) : Ġ} 

be two SVQN-sets over Ġ. Then, the union of A and B is defined by 

AB = {(, max{ŢA(),ŢB()}, max{ÇA(),ÇB()}, 

min{ŲA(),ŲB()}, min{ŅA(),ŅA()}) : Ġ}.                                                                             

Definition 2.4.[11] Suppose that A={(, ŢA(), ÇA(), ŲA(), 

ŅA()) : Ġ} be a SVQN-set over Ġ. Then, the complement of A 

is defined by Ac={(, ŅA(), ŲA(), ÇA(), ŢA()) : Ġ}.                                                                                                                

Definition 2.5.[11] Suppose that A={(, ŢA(), ÇA(), ŲA(), 

ŅA()) : Ġ} and B={(, ŢB(), ÇB(), ŲB(), ŅB()) : Ġ} 

be two SVQN-sets over Ġ. Then, the intersection of A and B is 

defined by AB={(, min{ŢA(),ŢB()}, min{ÇA(), ÇB()},   

max{ŲA(), ŲB()}, max{ŅA(), ŅB()}) : Ġ}.                     

Definition 2.6.[10] Suppose that  be a fixed set of n vertex. 

Assume that  be the set of edges between the vertices. Then, Ĝ=(Ψ, 

Ω) is called a single-valued neutrosophic graph (SVN-graph),  

where (i) TΨ, IΨ, FΨ : →[0, 1] denotes the truth, indeterminacy 

and false membership functions of a vertex i respectively such 

that 0  TΨ(i) + IΨ(i) + FΨ(i)  3 i, (i=1, 2, …., n).                                        

(ii) TΩ, IΩ, FΩ : →[0, 1] defined by  

TΩ(i, j)  min{TΩ(i), TΩ(j)},  

IΩ(i, j)  max{IΩ(i), IΩ(j)},  

FΩ(i, j)  max{FΩ(i), FΩ(j)},  

denotes the truth, indeterminacy and false membership 

functions of the edge (i, j), respectively such that 0  TΩ(i, 

j) + IΩ(i, j) + FΩ(i, j)  3 ((i, j), i=1, 2, …., n).  

Here, Ψ is called the SVQN vertex set of  and Ω is said to be 

the SVQN edge set of  respectively. 

3. Single-Valued Quadripartitioned Neutrosophic 

Graph 

 

Definition 3.1. Suppose that  = {i: i=1, 2, …, n} be a fixed 

set of vertices and  = {(i, j): i, j=1, 2, …, n} be the set of edges 

between the vertices of . An SVQN-graph of Ĝ*=(, ) is defined 

by Ĝ=(Ψ, Ω), where (i) ŢΨ:→[0, 1], ÇΨ:→[0, 1], ŲΨ:→[0, 1] 

and ŅΨ:→[0, 1] denotes the truth, contradiction, unknown and 

false membership functions of the vertices i respectively such 

that 0 ≤ ŢΨ(i) + ÇΨ(i) + ŲΨ(i) + ŅΨ(i) ≤ 4, i  (i=1, 2, …, 

n);                                                                                                                     

(ii) ŢΩ:→[0, 1], ÇΩ:→[0, 1], ŲΩ:→[0, 

1] and ŅΩ:→[0, 1] defined by ŢΩ(i, j) ≤ min{ŢΨ(i), 

ŢΨ(j),        

ÇΩ(i, j) ≤ min{ÇΨ(i), ÇΨ(j)},                                                                                                        

ŲΩ(i, j)  max{ŲΨ(i), ŲΨ(j)}, 

and ŅΩ(i, j)  max{ŅΨ(i), ŅΨ(j)}, 

indicates the truth, contradiction, unknown and false-

membership functions from  to [0, 1], respectively such 

that 0 ≤ ŢΨ(i) + ÇΨ(i) + ŲΨ(i) + ŅΨ(i) ≤ 4, (i, j) (i, j = 

1, 2, …., n).                        Here, Ψ is the SVQN vertex set of  

and Ω is the SVQN edge set of  respectively. Therefore, Ĝ=(Ψ, 

Ω) is an SVQN-graph of Ĝ*=(, ) if ŢΩ(i, j) ≤ min{ŢΨ(i), 

ŢΨ(j)}; ÇΨ(i, j) ≤ min{ÇΨ(i), ÇΨ(j)}; ŲΨ(i, j)  

max{ŲΨ(i), ŲΨ(j)}; and ŅΨ(i, j)  max{ ŅΨ(i), 

ŅΨ()}.Clearly, both Ψ and Ω are the SVQN-set over  and E 

respectively. 

Example 3.1. Assume that Ĝ = (, ) is a graph, where  = 

{1, 2, 3, 4} and  = {(1, 2), (2, 3), (3, 4), (4, 1)}. 

Suppose that Ψ is an SVQN vertex set of  and Ω is an SVQN 

edge set of  defined by the Table 1. 

 

 

Table 1: Tabular representation of Example 3.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 1 2 5 (1, 2) (1, 5) 

ŢΨ 0.1 0.2 0.0 0.0 0.0 

CΨ 0.2 0.1 0.5 0.1 0.1 

UΨ 0.6 0.6 0.6 0.8 0.8 

FΨ 0.8 0.6 0.7 0.9 1.0 
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  The graph of Example 3.1 is presented in Fig. 1                 

 
Figure 1: SVQN-graph 

 

Therefore, Ĝ = (Ψ, Ω) is an SVQN-graph of Ĝ = (, ). 

Remark 3.1. Assume that Ĝ = (Ψ, Ω) is an SVQN-graph. 

Then, the edge (i, j) is said to be incident at i and j. 
Definition 3.2. Suppose that Ĝ = (Ψ, Ω) be an SVQN-graph. 

Then, 

(i) (i, ŢΨ(i), ÇΨ(i), ŲΨ(i), ŅΨ(i)) is called a single valued 

quadripartitioned neutrosophic  vertex  (in short SVQN-vertex).                                                                                                                  

(ii) ((i, j), ŢΩ((i, j)), ÇΩ((i, j)), ŲΩ((i, j)), ŅΩ((i, 

j))) is called an SVQN edge (in short  SVQN-edge).   

Definition 3.3. Suppose that Ĝ = (Ψ, Ω) be an SVQN-graph of 

Ĝ = (, ). Then, H = (Ψ, Ω) is called an SVQN sub-graph (in 

short SVQN-sub-graph) of Ĝ = (Ψ, Ω) if H = (Ψ, Ω) is also an 

SVQN-graph of Ĝ = (, ) such that                                  

(i) Ψ  Ψ i.e., ŢΨ(i) ≤ ŢΨ(i), ÇΨ(i) ≤ ÇΨ(i), ŲΨ(i) ≥ 

ŲΨ(i), and ŅΨ(i) ≥ ŅΨ(i), for all i; 

(ii) Ω  Ω i.e., ŢΩ((i, j)) ≤ ŢΩ((i, j)), ÇΩ((i, j)) ≤ 

ÇΩ((i, j)), ŲΩ((i, j)) ≥ ŲΩ((i, j)), and ŅΩ((i, j)) ≥ ŅΩ((i, 

j)), (i, j)  . 

Example 3.2. Assume that Ĝ = (Ψ, Ω) be an SVQN-graph of 

Ĝ = (, ) as shown in Example 1. Then, H = (Ψ, Ω), where Ψ 

= {1, 2, 5}, Ω= {(1, 2), (1, 5)} defined by the Table 2: 

 

Table 2. Tabular representation of Example 3.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

The graph of Example 3.2 is presented in Fig. 2 

 

 
Figure 2: SVQN-sub-graph 

 

Here, H = (Ψ, Ω) is an SVQN-sub-graph of Ĝ = (Ψ, Ω). 

Definition 3.4. Suppose that Ĝ = (Ψ, Ω) be an SVQN-graph of 

Ĝ* = (, ). Then, the complement of Ĝ = (Ψ, Ω) is an SVQN-

graph Ĝ̅ of Ĝ* = (, ), where 

(i) Ţ̅Ψ(i) = ŢΨ(i), Ç̅Ψ(i) = ÇΨ(i), Ų̅Ψ(i) = ŲΨ(i), Ņ̅Ψ(i) = 

ŅΨ(i), i; 

(ii) Ţ̅Ω(i, j) = min {ŢΩ(i), ŢΨ(j)} - ŢΩ(i, j), Ç̅Ω(i, j) = 

min {ÇΩ(i), ÇΨ(j)} - ÇΩ(i, j),  

Ų̅Ω(i, j) = max {ŲΨ(i), ŲΨ(j)} - ŲΩ(i, j), and Ņ̅Ω(i, j) 

= max {ŅΨ(i), ŅΨ(j)} - ŅΩ(i, j), (i, j). 

Definition 3.5. Suppose that Ĝ = (Ψ, Ω) be an SVQN-graph. 

Then, the vertices i and j are called adjacent in Ĝ = (Ψ, Ω) if and 

only if ŢΩ(i, j) = min {ŢΨ(i), ŢΨ(j)}, ÇΩ(i, j) = min 

{ÇΨ(i), ÇΨ(j)}, ŲΩ(i, j) = max {ŲΨ (i), ŲΨ(j)} and ŅΩ(i, 

j) = max {ŅΨ(i), ŅΨ(j)}. 

Example 3.3. Assume that Ĝ = (Ψ, Ω) be an SVPN-graph, 

which is defined in following Table 3. 

 

Table 3. Tabular representation of Example 3.3 

 

 

 

               

 

 

 

 

 

 

 

 

 

 

 1 2 3 4 5 (1, 

2) 

(2, 

3) 

(3, 

4) 

(4, 

5) 

(5, 

1) 

ŢΨ 0.2 0.3 0.2 0.4 0.3 0.1 0.2 0.1 0.2 0.2 

ÇΨ 0.3 0.2 0.6 0.5 0.7 0.2 0.1 0.4 0.3 0.1 

ŲΨ 0.5 0.4 0.4 0.7 0.3 0.6 0.6 0.8 0.8 0.6 

ŅΨ 0.6 0.4 0.5 0.6 0.4 0.8 0.6 0.8 0.9 0.9 

 1 2 3 (1, 2) (2, 3) (3, 1) 

ŢΨ 0.1 0.3 0.2 0.1 0.2 0.1 

ÇΨ 0.2 0.6 0.4 0.2 0.4 0.2 

ŲΨ 0.9 0.6 0.5 0.9 0.6 0.9 

ŅΨ 0.8 0.6 0.6 0.8 0.6 0.8 
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The graph of Example 3.3 is presented in Fig. 3   

                                                        

 
Figure 3: SVQN-graph of Adjacent Vertices 

 

Here, the vertices 1 and 2 are adjacent in the SVQN-graph Ĝ 

= (Ψ, Ω). Similarly, the vertices 3 and 1 are adjacent in the 

SVQN-graph Ĝ = (Ψ, Ω). But the vertices 2 and 3 are not 

adjacent in the SVQN-graph Ĝ = (Ψ, Ω).                                                                                                                                                             

Definition 3.6. In an SVQN-graph Ĝ = (Ψ, Ω), a vertex j 

is called an isolated vertex if there exists no edge incident at j.                                   

Example 3.4. Suppose that Ĝ = (Ψ, Ω) be an SVQN-graph, 

which is defined in Table 4. 

 

Table 4. Tabular representation of Example 3.4 

 

 

The graph of Example 3.4 is represented in Fig. 4 

 

 
Figure 4: SVQN-graph with Isolated vertex 

 

In the above SVQN-graph Ĝ = (Ψ, Ω), the vertex 3 is an 

isolated vertex. 

Definition 3.7. Suppose that Ĝ = (Ψ, Ω) is an SVQN-graph. 

Assume that 0 and n be two vertices in Ĝ = (Ψ, Ω). Then, an 

SVQN path P(0, n) in an SVQN-graph Ĝ = (Ψ, Ω) is a sequence 

of distinct vertices 0, 1, 2, 3, …., n such that ŢΩ(i-1, i) > 

0, ÇΩ(i-1, i) > 0, ŲΩ(i-1, i) > 0 and ŅΩ(i-1, i) > 0, where 0 ≤ 

i ≤ n. Here, n (≥ 1) is called the length of the path P(0, n). The 

consecutive pairs (i-1, i) (0 ≤ i ≤ n) are called the edges of the 

path P(0, n). The path P(0, n) is called a cycle if 0 = n, 

where n≥3. 

Definition 3.8. Suppose that Ĝ = (Ψ, Ω) be an SVQN-graph. 

Then, Ĝ = (Ψ, Ω) is said to be an SVQN connected  graph (in short 

SVQN-C-graph) if there exists at least one SVQN-path between 

two vertices.        

Definition 3.9. Assume that Ĝ = (Ψ, Ω) be an SVQN-graph. 

Then, a vertex having exactly one edge incident on it is called a 

pendent vertex. If a vertex is not a pendent vertex, then it is called 

a non-pendent vertex. 

Remark 3.2. Suppose that Ĝ = (Ψ, Ω) be an SVQN-graph. 

(i) If an edge is incident with a pendent vertex, then the edge is 

said to be a pendent edge. Otherwise, it is called a non-pendent 

edge.                                                                                                                                                  

(ii) If a vertex is adjacent to a pendent vertex, then the vertex is 

said to be a support of that pendent edge.   

Example 3.5. Let Ĝ = (Ψ, Ω) be an SVQN-graph, which is 

defined by Table 9 and Table 10. 

 

Table 5: Tabular representation of Example 3.5 

             

The graph of Example 3.5 is represented in Fig. 5 

 

 
Figure 5: SVQN-graph with Pendent Vertex 

 

     In the above SVQN-graph Ĝ = (Ψ, Ω), the vertices 1 and 

4 are the pendent vertices. But the vertices 2 and 3 are the non-

pendent vertices. Similarly, the edges (1, 2) and (3, 4) are the 

pendent edges. But the edge (2, 3) is a non-pendent edge. The 

 1 2 3 4 (1, 

2) 

(2, 

4) 

(4, 

1) 

ŢΨ 0.4 0.3 0.6 0.2 0.2 0.1 0.2 

ÇΨ 0.3 0.4 0.8 0.9 0.2 0.3 0.2 

ŲΨ 0.5 0.4 0.6 0.6 0.6 0.8 0.9 

ŅΨ 0.5 0.6 0.6 0.9 0.4 0.5 1.0 

 1 2 3 4 (1, 

2) 

(2, 

3) 

(3, 

4) 

ŢΨ 0.2 0.4 0.5 0.6 0.1 0.3 0.4 

ÇΨ 0.5 0.4 0.3 0.2 0.3 0.2 0.1 

ŲΨ 0.6 0.8 0.9 0.7 0.9 0.9 1.0 

ŅΨ 0.8 0.7 0.8 0.7 0.9 0.9 0.9 
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vertex 3 is support of the pendent edge (3, 4). But 2 is not the 

support of the pendent edge (1, 2).                                                                                                                   

Definition 3.10. A SVQN-graph Ĝ = (Ψ, Ω) of Ĝ* = (,) is 

said to be a complete SVQN-graph if 

ŢΩ(i, j) = min {ŢΨ(i), ŢΨ(j)}; 

ÇΩ(i, j) = min {ÇΨ(i), ÇΨ(j)}; 

ŲΩ(i, j) = max {ŲΨ(i), ŲΨ(j)}; 

and ŅΩ(i, j) = max {ŅΨ(i), ŅΨ(j)}, i, j. 

Example 3.6. Assume that Ĝ* = (, ) is a graph, where  = 

{1, 2, 3} and  = {(1, 2), (2, 3), (3, 1)}. Suppose that Ĝ 

= (Ψ, Ω) be an SVQN-graph defined by Table 6.                   

Table 6. Tabular representation of Example 3.6 

 

             
The graph of Example 3.6 is represented in Fig. 6 

 

 
Figure 6: Complete SVQN-graph 

 

Here, the above graph is a complete SVQN-graph. 

 

 

 

 

 

 

 

 

 

 

 

Table 7. Tabular representation of Example 3.7 

 

 

Definition 3.11. A SVQN-graph Ĝ = (Ψ, Ω) of Ĝ* = (, ) is 

called a bipartite SVQN-graph if the graph Ĝ* = (,) is a bipartite 

graph.                                                                                                                          

Example 3.7. Assume that Ĝ* = (, ) be a graph, where  = 

{1, 2, 3, 4, 5, 6} and  = {(1, 2), (2, 3), (3, 1)}. 

Suppose that Ĝ = (Ψ, Ω) be an SVQN-graph defined by Table 7.  

 

 

 

 

The representation of the graph of Example 3.7 is presented in 

Fig. 7 

 

 
 

Figure 7: Bipartite SVQN-graph 

 

Here, the crisp graph Ĝ* = (, ) is a bipartite graph and Ĝ = 

(Ψ, Ω) is a SVQN-graph of Ĝ* = (, ). Hence, Ĝ = (Ψ, Ω) is a 

bipartite SVQN-graph.     

Definition 3.12. Suppose that Ĝ = (Ψ, Ω) be an SVQN-graph. 

Then, the degree of the vertex  is defined by   

d() = (dŢ(), dÇ(), dŲ(), dŅ()), 

where dŢ() = degree of the truth-membership vertex = sum of 

the truth-membership of all edges those are incident on the vertex 

 = ∑  𝐮≠ ŢΩ (u, );                                                                                                           
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Ţ
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Ç
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Ų
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1 2 3 (1, 2) (2, 3) (3, 1) 

ŢΨ 0.2 0.4 0.3 0.2 0.3 0.2 

ÇΨ 0.5 0.7 0.4 0.5 0.4 0.4 

ŲΨ 0.3 0.2 0.4 0.2 0.2 0.3 

ŅΨ 0.5 0.4 0.3 0.4 0.3 0.3 
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Table 8. Tabular representation of Example 3.8 

 

dÇ() = degree of the contradiction-membership vertex = sum 

of the contradiction-membership of all edges those are incident on 

the vertex  = ∑  𝐮≠ ÇΩ (u, k);                                                                                            

dŲ() = degree of the unknown-membership vertex = sum of 

the unknown-membership of all edges those are incident on the 

vertex  = ∑  𝐮≠ ŲΩ(u, ); 

dŅ() = degree of the falsity-membership vertex = sum of the 

false-membership of all edges those are incident on the vertex  = 

∑  𝐮≠ ŅΩ (u, ).                                                                                                          

 

Example 3.8. Assume that Ĝ = (Ψ, Ω) be an SVQN-graph of 

Ĝ* = (, ) defined by Table-8. 

Table 9: Tabular representation of Example 3.9 

 

 

The representation of the graph of Example 3.8 is shown in 

Fig. 8 

 

 
Figure 8: SVQN-graph for Example 8 

 

Then, d(1) = (0.3, 0.7, 1.7, 1.3), d(2) = (0.5, 0.5, 1.3, 0.9), 

d(3) = (0.5, 0.5, 1.5, 0.9), and d(4) = (0.3, 0.7, 1.9, 1.3).  

Definition 3.13. Suppose that Ĝ = (Ψ, Ω) is an SVQN-graph 

of Ĝ* = (, ). Then, Ĝ = (Ψ, Ω) is called a constant SVQN-graph 

if degree of each vertices is same i.e., d() = (dŢ(), dÇ(), dŲ(), 

dŅ()), .                           

Example 3.9. Assume that Ĝ = (Ψ, Ω) be an SVQN-graph, 

which is defined by Table 9 

 

 

  

The representation of the graph for Example 3.9 is shown in 

Fig. 9   

          

 
Figure 9: SVQN-graph for Example 9 

 

In the above SVQN-graph Ĝ = (Ψ, Ω), the degree of the 

vertices 1, 2, 3, and 4 are d(1) = (0.5, 0.5, 1.1, 1.5), d(2) = 

(0.5, 0.5, 1.1, 1.5), d(3) = (0.5, 0.5, 1.1, 1.5) and d(4) = (0.5, 0.5, 

1.1, 1.5). Hence, Ĝ = (Ψ, Ω) is a constant SVQN-graph. 

Definition 3.14. Assume that Ĝ = (Ψ, Ω) be a SVQN-graph. 

Then, the order of Ĝ = (Ψ, Ω), denoted by O(Ĝ) is defined by  

O(Ĝ) = (OŢ(Ĝ), OÇ(Ĝ), OŲ(Ĝ), OŅ(Ĝ)), 

where OŢ(Ĝ) = ∑ ŢΨ∈V  denotes the Ţ-order of Ĝ=(Ψ, Ω); 

OÇ(Ĝ) = ∑ ÇΨ∈V  denotes the Ç-order of Ĝ=(Ψ, Ω) 

OŲ(Ĝ) = ∑ ŲΨ∈V  denotes the Ų-order of Ĝ=(Ψ, Ω); 

OF(Ĝ) =  ∑ ŅΨ∈V  denotes the Ņ-order of Ĝ=(Ψ, Ω). 

Example 3.10. Assume that Ĝ = (Ψ, Ω) be an SVQN-graph of 

Ĝ* = (, ) as shown in Example 8. Then, the order of the SVQN-

graph Ĝ = (Ψ, Ω) is O(Ĝ) = (1.5, 1.9, 1.9, 1.2). 

Definition 3.15. Suppose that Ĝ = (Ψ, Ω) is an SVQN-graph. 

Then, the size of Ĝ = (Ψ, Ω), denoted by S(Ĝ) is defined by 

S(Ĝ) = (SŢ(Ĝ), SÇ(Ĝ), SŲ(Ĝ), SŅ(Ĝ)), 

where SŢ(Ĝ) = ∑   u≠ ŢΩ(u, k) denotes the Ţ-size of Ĝ = (Ψ, 

Ω); 

SC(Ĝ) = ∑   u≠ ÇΩ(u, k)  denotes the Ç-size of Ĝ = (Ψ, Ω); 

SŲ(Ĝ) = ∑   u≠ ŲΩ(u, k) denotes the Ų-size of Ĝ = (Ψ, Ω); 

SŅ(Ĝ) = ∑   u≠ ŅΩ(u, k) denotes the Ņ-size of Ĝ = (Ψ, Ω). 

Example 3.11. Assume that Ĝ = (Ψ, Ω) be an SVQN-graph of 

Ĝ* = (, ) as shown in Example 8. Then, the size of the SVQN-

graph Ĝ = (Ψ, Ω) is S(Ĝ) = (0.8, 1.2, 3.2, 2.2).  

 

 1 2 3 4 (1, 

2) 

(2, 

3) 

(3, 

4) 

(4, 

1) 

ŢΨ 0.2 0.4 0.4 0.5 0.2 0.3 0.2 0.1 

ÇΨ 0.4 0.5 0.4 0.6 0.3 0.2 0.3 0.4 

ŲΨ 0.4 0.4 0.2 0.9 0.8 0.5 1.0 0.9 

ŅΨ 0.3 0.3 0.2 0.4 0.5 0.4 0.5 0.8 
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4. Conclusions 

 

This article presents the notion of degree, order, and size of SVQN-

graphs. Further, few examples have been furnished to justify the 

definitions and results established. It is hoped that, the notion 

presented in this paper will open up new avenues of research on 

SVQN-graph for its application in real problems in the current 

single valued quadripartitioned neutrosophic area. 
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