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ABSTRACT  

Acetic acid (AA) is a valuable bioproduct with broad industrial 

applications in the food, pharmaceutical, and chemical 

sectors. In this study, Gluconobacter oxydans was employed 

to produce acetic acid using a modified medium containing 

12% dairy wastewater as a cost-effective substrate. The 

effects of glucose concentration, incubation time, and 

temperature on acetic acid production were evaluated, and the 

process was modeled using an Artificial Neural Network (ANN) 

based on a multilayer perceptron (MLP) architecture (3–2–1 

structure). The experimental acetic acid yield ranged from 1.01 

to 4.68 g/100 mL, values consistent with those reported in the 

literature for biological fermentation systems. The ANN model 
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achieved low prediction errors (SSE = 0.756 and 0.187 for 

training and testing, respectively) and demonstrated strong 

generalization capacity without overfitting. Connection weight 

and relative importance analyses revealed that incubation time 

and temperature were the most influential variables affecting 

yield, while glucose concentration had a secondary effect. 

These findings confirm the suitability of ANN as a reliable 

computational tool for modeling and optimizing nonlinear 

bioprocesses. The integration of machine learning approaches 

with microbial fermentation can enhance process 

understanding and support the development of sustainable 

acetic acid production strategies using industrial by-products. 

Keywords: Artificial Neural Network (ANN), Gluconobacter 

oxydans, Acetic acid; Fermentation, Bioprocess modelling. 

RESUMEN. 

El ácido acético (AA) es un valioso bioproducto con amplias 

aplicaciones industriales en los sectores alimentario, 

farmacéutico y químico. En este estudio, se empleó 

Gluconobacter oxydans para la producción de ácido acético 

utilizando un medio modificado con un 12 % de aguas 

residuales lácteas como sustrato rentable. Se evaluaron los 

efectos de la concentración de glucosa, el tiempo de 

incubación y la temperatura en la producción de ácido acético, 

y el proceso se modeló mediante una red neuronal artificial 

(RNA) basada en una arquitectura de perceptrón multicapa 

(MLP) (estructura 3-2-1). El rendimiento experimental de ácido 

acético osciló entre 1,01 y 4,68 g/100 mL, valores consistentes 

con los reportados en la literatura para sistemas de 

fermentación biológica. El modelo de RNA logró bajos errores 
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de predicción (SSE = 0,756 y 0,187 para entrenamiento y 

prueba, respectivamente) y demostró una gran capacidad de 

generalización sin sobreajuste. Los análisis de peso de 

conexión e importancia relativa revelaron que el tiempo de 

incubación y la temperatura fueron las variables más 

influyentes en el rendimiento, mientras que la concentración 

de glucosa tuvo un efecto secundario. Estos hallazgos 

confirman la idoneidad de las redes neuronales artificiales 

(RNA) como herramienta computacional fiable para modelar y 

optimizar bioprocesos no lineales. La integración de técnicas 

de aprendizaje automático con la fermentación microbiana 

puede mejorar la comprensión del proceso y respaldar el 

desarrollo de estrategias sostenibles de producción de ácido 

acético a partir de subproductos industriales. 

Palabras clave: Red neuronal artificial (RNA), Gluconobacter 

oxydans, Ácido acético; Fermentación, Modelado de 

bioprocesos. 

INTRODUCTION  

Acetic acid (AA) is an industrially significant 

compound with wide-ranging applications 

across sectors such as cosmetics, 

pharmaceuticals, food, and textiles. 

Traditionally, AA has been synthesized 

through chemical routes; however, these 

methods raise concerns related to 

environmental toxicity and the high cost of 

reagents involved in chemical synthesis 

when compared to biologically derived 

alternatives (Tarón-Dunoyer, et al., 2022; 

Kalck et al., 2020). Consequently, the 

development of sustainable and eco-friendly 

biological processes has emerged as a 

promising alternative for acetic acid 

production. Fermentation-based approaches 

offer several advantages, particularly the 

capacity to utilize food and organic wastes as 

substrates, which are readily metabolized by 

microorganisms to produce AA while 

generating non-toxic residues. 
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In this context, Gluconobacter species have 

attracted increasing attention over the past 

two decades due to their exceptional ability 

to partially oxidize sugars and alcohols. 

Among them, Gluconobacter oxydans 

functions as an efficient biocatalyst and has 

demonstrated notable potential in enhancing 

the biosynthesis of oxidized metabolites such 

as AA (Otero-Pérez, et al., 2024; Es-Sbata et 

al., 2022; Chen et al., 2016). The exploitation 

of low-cost and renewable substrates—such 

as organic residues, food industry by-

products, and waste from fruit, meat, and 

dairy processing—represents a viable 

strategy for reducing production costs and 

improving process sustainability (Arias 

Palma, et al., 2021; Pal and Nayak, 2016). 

However, optimizing acetic acid yield through 

biological pathways requires careful 

adjustment of multiple nutritional and 

physiological parameters. As highlighted by 

Fasolo et al., (2020), the use of experimental 

design techniques is crucial for achieving 

optimal process conditions. 

Artificial Neural Networks (ANNs), inspired 

by the structure and function of the human 

brain, represent an advanced computational 

approach capable of modeling complex, 

nonlinear relationships (Agatonovic-Kustrin & 

Beresford, 2000). Owing to their capacity for 

adaptive learning, ANNs have been 

increasingly applied in materials science and 

biotechnology to predict and optimize system 

behavior where traditional statistical models 

often fail (Ishtiaq et al., 2024; Ishtiaq et al., 

2025). Structurally, an ANN consists of 

interconnected nodes, analogous to 

biological neurons, organized into input, 

hidden, and output layers. These 

interconnected nodes process signals 

through weighted connections that are 

continuously adjusted to minimize prediction 

errors (Ripley, 2007). The effectiveness of an 

ANN depends on its architecture and learning 

rate, which determine its ability to generalize 

and provide accurate predictions (Pérez-

Gomariz et al., 2023; Eltawil et al., 2023). 

Recent studies have demonstrated the 

superiority of ANNs over conventional 

optimization techniques such as Response 

Surface Methodology (RSM), particularly in 

modeling nonlinear and complex phenomena 

within food processing and engineering 

contexts (Ameer et al., 2017; Cheok et al., 

2012). Unlike statistical models, ANNs fall 

under the domain of non-statistical machine 

learning (NSML), enabling the system to 

learn directly from data patterns and make 

reliable predictions. Therefore, the present 

study aims to investigate the influence of 
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glucose concentration, temperature, and 

incubation time on AA production, and to 

evaluate the predictive performance of ANNs 

as a modeling tool for process optimization. 

MATERIALS AND METHODS  

Cultivation Conditions and Acetic Acid 

Estimation 

The Gluconobacter oxydans strain used in 

this study was obtained from the 

Microbiology Laboratory of the University of 

Cartagena, Colombia. The culture was 

initially activated in Glucose Yeast Carbonate 

(GYC) broth medium to ensure optimal 

microbial viability prior to fermentation. For 

AA production, a modified fermentation 

medium was formulated containing 12% (v/v) 

dairy wastewater as a substrate. The medium 

was sterilized by autoclaving at 121 °C and 

15 psi for 15 minutes. The fermentation 

process was conducted for various days 

under continuous agitation at 120 rpm, with 

aeration maintained at a rate of 1 L h⁻¹ L⁻¹. 

Samples were collected daily to monitor AA 

production. Quantification of AA was 

performed via acid–base titration following 

the method described by Sharafi et al., 

(2010). 

ANN-Based Predictive Analysis 

ANNs are structured in sequential layers 

consisting of an input layer, one or more 

hidden layers, and an output layer. Each 

neuron in the hidden layer receives a 

weighted sum of the inputs from the previous 

layer, and these weights are iteratively 

adjusted during training to minimize the 

discrepancy between predicted and actual 

outputs. Training proceeds until the sum of 

squared errors reaches a minimum, 

indicating optimal model convergence. In this 

study, an ANN model was developed using 

IBM SPSS Statistics version 24 to predict 

acetic acid yield under varying process 

conditions.  

The dataset comprised 15 valid 

observations, all of which were retained for 

analysis. Data were randomly divided into 

two subsets: 73.3% (11 cases) were used for 

network training and 26.7% (4 cases) for 

testing to evaluate the model’s predictive 

performance. The network architecture 

included three input variables—glucose 

concentration, incubation time, and 

temperature—one hidden layer with two 

neurons employing a hyperbolic tangent 

activation function, and a single output 

neuron corresponding to AA yield. 
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Prior to training, all input and output variables 

were standardized to ensure consistent 

scaling. The performance of the neural 

networks was evaluated using widely 

adopted statistical metrics in the field of 

machine learning as the sum of the squared 

error. 

 

 

RESULTS AND DISCUSSION  

Estimation of acetic acid   

The experimental production of AA ranged 

from 1.01 to 4.68 g/100 mL, values 

comparable to those reported by Upadhyay 

et al., (2023), who observed yields between 

0.6 and 2.52 g/100 mL for acetic acid–

producing bacteria cultured in GYC medium. 

In the present study, glucose concentration, 

temperature, and incubation time were 

selected as the main independent variables 

for evaluating their individual and interactive 

effects on acetic acid production. A total of 15 

experimental runs were conducted, and both 

the experimentally obtained and ANN-

predicted AA yields are summarized in Table 

1. AA production was assessed using a 

modified culture medium containing 12% 

dairy wastewater, sterilized by autoclaving, 

as a carbon-rich substrate. The results 

demonstrate that dairy industry effluents can 

serve as an efficient and low-cost feedstock 

for AA biosynthesis, aligning with global 

trends toward waste valorization and circular 

bioeconomy approaches. 

Comparable studies have reported similar 

production levels using alternative organic 

substrates. For instance, Fronteras et al., 

(2021) achieved 4.12 g/100 mL of AA from 

mango peel fermentation, while Lu et al., 

(2000) reported the potential of spoiled 

bananas as a viable carbon source. Likewise, 

other feedstocks such as corn cob, synthetic 

media, cloudberry, onion waste, kitchen 

waste, and spoiled banana have yielded 3.5, 

4.32, 5.0, 5.3, 2.5, and 4.36 g/100 mL of AA, 

respectively (Gong et al., 2019; Iida, 2013; 

Joung, 2019; Chai et al., 2016). Biological 

acetic acid production generally occurs 

through two major pathways. In the first, 

yeast species convert carbohydrates into 

ethanol, which is subsequently oxidized to 

acetic acid. In the second, acetic acid 

bacteria (AAB) directly oxidize ethanol—

produced from carbohydrate metabolism—

into AA. During this incomplete oxidation 
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process, electrons are transferred to oxygen 

instead of being fully converted into carbon 

dioxide, allowing efficient acetic acid 

accumulation (Cheryan et al., 1997). 

Table 1. The design of the experiment of the factors dependent on the AA yield. 

Glucose Temperature Incubation time Experimental acetic acid yield Predictive value ANN 

2 25 65 1.61 1.96 

5 32.5 65 4.68 4.03 

5 25 36 1.01 1.16 

5 40 94 2.89 4.17 

8 32.5 36 1.11 1.19 

2 32.5 94 2.25 2.34 

8 40 65 2.35 2.49 

5 40 36 1.42 1.18 

8 25 65 1.67 1.97 

5 25 94 1.96 1.88 

2 32.5 36 1.08 1.19 

2 40 65 2.28 2.18 

5 32.5 65 4.68 4.03 

8 32.5 94 2.36 2.40 

8 32.5 65 4.68 4.05 

 

ANN predictive modeling   

The multilayer perceptron (MLP) neural 

network developed in this study was 

designed to model the nonlinear 

relationship between process variables 

and AA yield. The model incorporated 

three input neurons representing the 

independent variables—glucose 

concentration, incubation time, and 

temperature. The network was 

successfully trained to predict AA 

production as a function of these 

experimental parameters. The available 

dataset was divided into two subsets: 

73.3% of the data were used for training 

and 26.7% for testing the model’s 

predictive performance. The final network 

architecture followed a 3–2–1 topology, 

consisting of one hidden layer with two 

neurons (denoted as H(1:1) and H(1:2)) 

employing the hyperbolic tangent 

activation function.  
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This configuration allowed the network to 

effectively capture complex nonlinear 

interactions among the input variables. 

The output layer contained a single 

neuron corresponding to the dependent 

variable—AA yield—and utilized the 

identity activation function to ensure a 

linear output response. Bias terms were 

included in both the hidden and output 

layers to adjust neuron activation 

thresholds, thereby enhancing the 

model’s adaptability and overall 

prediction accuracy. This optimized ANN 

architecture demonstrated robust 

learning behavior, confirming its 

suitability for modeling the biological 

production of AA under varying 

fermentation conditions. 

Model Performance and Validation    

During the training phase, the ANN model 

achieved a sum of squares error (SSE) of 

0.756 and a relative error of 0.151, 

whereas the testing phase yielded an 

SSE of 0.187 and a relative error of 

0.102. These results demonstrate the 

model’s strong generalization ability and 

confirm that no overfitting occurred during 

training. The stopping criterion was 

satisfied after a single iteration, with no 

further reduction in error, indicating that 

the network had reached optimal 

convergence. Training was completed in 

less than one second, a negligible 

computational time attributable to the 

small dataset size and the compact 3–2–

1 network architecture.  

The close agreement between predicted 

and experimental values underscores the 

accuracy and reliability of the ANN model 

in estimating acetic acid yield. Overall, 

these findings confirm that the developed 

ANN provides a robust and efficient 

computational tool for modeling and 

optimizing bioprocesses, particularly for 

systems involving nonlinear relationships 

among multiple operational variables. 
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Table 2. Parameter estimates obtained from the neural network 

Predictor 

Predicted 

Hidden Layer 1 Output Layer 

H(1:1) H(1:2) Yield 

 
Input Layer 

(Bias) 0.971 2.673  

Glucose 0.081 0.026  

Incubation 3.947 -2.052  

Temperature -1.488 2.594  

Hidden Layer 1 (Bias)   -0.623 

 H(1:1)   1.144 

 H(1:2)   0.878 

 

Analysis of Connection Weights 

The connection weights obtained from 

the trained ANN (Table 2) provide 

valuable insights into the relative 

importance of each input variable on AA 

yield prediction. Among the evaluated 

parameters, incubation time and 

temperature exhibited the most 

significant influence on model output. 

Incubation time showed the highest 

positive weight (3.947) toward hidden 

neuron H(1:1) and a negative weight (–

2.052) toward H(1:2), indicating its dual 

regulatory effect on acetic acid yield 

formation and highlighting its complex 

interaction within the network. Similarly, 

temperature displayed a strong positive 

connection weight (2.594) to H(1:2) and a 

moderate negative weight (–1.488) to 

H(1:1), confirming its nonlinear 

relationship with incubation time and its 

substantial contribution to AA 

biosynthesis.  

In contrast, glucose concentration 

presented relatively smaller but 

consistent weights across both hidden 

neurons, suggesting a secondary yet 

supportive role in the prediction process, 

which can be attributed to the presence 

of dairy wastewater in the substrate used 

for AA production. Furthermore, the 

positive output weights from both hidden 

neurons to the output layer (1.144 and 

0.878) indicate a synergistic contribution 

of these hidden nodes in enhancing the 

predictive accuracy of the network. This 

pattern demonstrates that the trained 

ANN effectively captured the nonlinear 
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dependencies among process variables 

and their combined effects on acetic acid 

yield. 

The network diagram (Figure 1) visually 

depicts the flow of information across the 

input, hidden, and output layers, 

emphasizing the dominant influence of 

incubation time and temperature on AA 

yield prediction. The thickness and 

direction of the connections highlight the 

strength of these variables within the 

model architecture. This observation is 

further corroborated by the relative 

importance analysis, which ranked 

incubation time and temperature as the 

two most significant predictors, while 

glucose concentration exerted a 

comparatively lower yet consistent effect 

on model output. These results align with 

the connection weight analysis (Table 2), 

confirming that process conditions 

related to time and temperature play a 

critical role in modulating the metabolic 

activity of Gluconobacter oxydans and, 

consequently, the overall AA production. 

 

Figure 1. Schematic representation of the ANN model showing input, hidden, and 

output layers. 



 
                                                                                                      @LIMENTECH CIENCIA Y TECNOLOGÍA ALIMENTARIA 

                                               ISSN Impreso 1692-7125/ ISSN Electrónico 2711-3035. Volumen 23 No. 2, p. 5 - 18 -, año 2026 
                                                                                                                                                Facultad de Ingenierías y Arquitectura 
                                                                                                                                                                   Universidad de Pamplona 

 
      
 

15 
González Cuello, Rafael, Ortega Toro, Rodrigo Taron Dunoyer, Arnulfo 

CONCLUSION 

The artificial neural network developed in 

this study successfully predicted acetic 

acid yield based on the input variables of 

glucose concentration, incubation time, 

and temperature. The model exhibited 

low prediction errors in both the training 

and testing phases, confirming its 

robustness, reliability, and ability to 

capture the nonlinear dynamics 

characteristic of biological fermentation 

systems. Among the evaluated 

parameters, incubation time and 

temperature were identified as the most 

influential factors affecting yield, 

consistent with established microbial and 

biochemical principles, wherein 

metabolic activity and substrate 

conversion are strongly governed by 

process duration and environmental 

conditions. Overall, the developed 

artificial neural network demonstrates 

significant potential as a computational tool 

for process modeling, optimization, and 

prediction in biotechnological and food-

related applications. Its effectiveness is 

particularly valuable in scenarios with limited 

experimental datasets or complex variable 

interactions. Future research should focus on 

expanding the dataset, integrating additional 

process parameters, and applying the trained 

network to simulate or optimize bioprocess 

performance under a broader range of 

operational conditions. 
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